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Abstract

Real-time analytics of large data streams is a fundamental task in the world of big data. When
analyzing massive datasets, generating exact answers to even very basic queries about the
data can require huge computing resources (memory and compute time). This leads to failure
to scale as working with the full data is computationally infeasible.

Sketches are statistical data summaries of large data streams used to perform fast real-
time analytics using only a small amount of memory space. They are a family of streaming
algorithms processing massive datasets in a single pass. They can provide accurate, though
approximate, answers with guaranteed error bounds to computationally complex queries or-
ders of magnitude faster than traditional exact methods.

Describing the data distribution of a large stream of numeric values, such as web page
load times, is a fundamental problem within the constraints of single-pass computation (the
streaming model). We often desire to characterize the distribution of these values to under-
stand the underlying trends or patterns in the data, for example, the median, fifth, and 95th
percentile values. These are called quantiles. Quantiles are widely used representations for
data distribution.

Thus, a popular sketch type is Quantiles, which estimates the data distribution of a large
input stream. Quantiles sketches can estimate a quantile query up to a bounded error with
bounded failure probability.

We present Quancurrent, a highly scalable concurrent Quantiles sketch that retains a
small error bound with reasonable query freshness. Quancurrent’s throughput increases lin-
early with the number of available threads, and with 32 threads, it reaches an update speedup
of 12x and a query speedup of 30x over a sequential Quantiles sketch. Quancurrent allows
queries to occur concurrently with updates and achieves an order-of-magnitude better query
freshness than existing scalable solutions.

We prove our algorithm’s correctness and analyze the approximation error and the query

freshness.
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Fast Concurrent Data Sketches (framework proposed by Rinberg
et al. [37] for building concurrent data sketches)
Interval-Based-Reclamation (an interval-based approach to
memory management for concurrent data structures)
Non-Uniform-Memory-Access (memory design used in multi-
processing where the memory access time depends on the mem-

ory location relative to the processor)

17
18
14
14
18
22
18
14
14

14
17

17

17

17

35



PAC Probably Approximately Correct (A is a PAC learning algorithm 7
if for given ¢ > 0 and § < 1 A outputs a hypothesis h that
has an average error less than or equal to € on the samples with
probability at least 1 — d)



Chapter 1
Introduction

Data sketches, or sketches for short, are indispensable tools for performing analytics on high-
rate, high-volume incoming data streams [14]. A case study made by Yahoo has shown the
impact of sketches on data analytics. Flurry [18] is a mobile application real-time analytics
platform, acquired by Yahoo in 2014. Using data sketches architecture in Flurry reduced the
overall cost of the system considerably. Sketches led to a reduction in data processing times
from days or hours to minutes and even seconds [15].

Sketches typically estimate some function of a large data stream, for example, the fre-
quency of certain items, or how many unique items have appeared. Sketches are quantitative
objects that support update and query operations, where the return value of a query is from
a totally ordered set.

Sketches are designed for stream settings in which each data item is only processed once.
A sketch data structure is essentially a succinct (sublinear) summary of a data stream that
approximates a specific query (unique element count, quantile values, etc.). Since summaries
have a much smaller size, they typically answer queries approximately, and there is a trade-
off between the size of the summary and the approximation error. Some sketches can be
deterministic, although most sketches are probabilistic in their behavior and take advantage
of various randomization techniques. Typical sketches are probably approximately correct
(PAC), estimating some aggregate quantity with an error of at most € with a probability of at
least 1 — § for some parameters € and § [3, 9, 37, 44].

Some sketches have a well-known mergeability property [3], which enables computing a
sketch over a stream by merging sketches over sub-streams and merging them into a single
sketch whose error is no greater than if it had processed the entire stream. The ever-increasing
rates of incoming data create a strong demand for parallel stream processing [11, 26]. Previous
works have exploited the mergeability property for distributed stream processing, devising
solutions with a sequential bottleneck at the merge phase.

With the rise of big data, a fundamental task in data management and data analysis is
to describe the distribution of the data. This is used in applications such as exploratory data
analysis [41], operation monitoring [1], and more. If the distribution is known a priori, such as

anormal or zipifian distribution, it can be described by the parameters of the distribution. This



is rarely the case in practice, which calls for describing the distribution nonparametrically.
Quantiles are the most commonly used nonparametric representation for data distribution.
In particular, a technique such as quantile approximation, a nonparametric representation, is
widely used to characterize data distributions [42, 44].

This problem has attracted a lot of prior studies, from both the algorithms and the database
communities [34, 31, 27, 3, 5]. Quantiles are of interest to both database implementers and
users: for instance, they are a fundamental tool for query optimization [31], splitting of data
in parallel database systems [35, 11, 26], and statistical data analysis [28, 13]. In the past years,
quantile estimation has received particular attention in the data streaming model, i.e., the data
elements arrived one by one in a streaming fashion, and the algorithm has limited memory
to work with [34, 31, 32, 22, 20, 38, 12, 27, 3, 29, 44].

The quantiles correspond to the cumulative distribution function (CDF), which yields the
probability density function (PDF). They are a generalization of the median. Given A, a multi-
set of n elements is drawn from a totally ordered universe, the ¢-quantile of A, for some
0 < ¢ < 1, is the element whose rank is |¢n| in A, where the rank of an element z is the
number of elements in A smaller than . Note, given enough space, the quantiles can be easily
found by sorting the set A.

Yet, when the algorithm’s memory is limited and significantly smaller than the size of
the data set, it is not possible to compute the quantile precisely. This was formalized in a
1980 paper by Munro and Peterson [34]. They have shown that computing the median with p
passes over A has to use Q(n~?) space. Thus, computing the true median will require memory
linear in the size of the set. An alternate and more practical approach to the problem is to
approximate the quantiles, represented as € approximation ¢-quantile: For an error parameter
0 < € < 1, the e-approximate ¢-quantile is any element between (¢ — €)n and (¢ + €)n.

The Quantiles sketch family captures this task [33, 3, 19, 10]. The Quantiles sketch rep-
resents the quantiles distribution in a stream of n elements, such that forany 0 < ¢ < 1, a
query for quantile ¢ returns an estimate of the | n¢|™ largest element. Due to the importance
of quantiles approximation, Quantiles sketches are a part of many analytics platforms, e.g.,
Druid [16], Hillview [7], Presto [36], and Spark [39].

The deterministic e-approximation ¢-quantile algorithms take as input a quantile query
¢ and a precision value € and output an element x such that the quantile of x is in the range
[¢ — €,¢ + €]. An alternative approach proposes a family of randomized algorithms where
the output answer z is within the [¢ — €, ¢ + €| range with a high probability [32, 29]. These
algorithms provide guarantees by bounding the failure probability to at most § such that the
user has 1 — § confidence that the sketch’s output is e-approximation.

The first deterministic streaming algorithm for quantiles was proposed by Manku, Ra-
jagoplan, and Lindsay [31], building on the prior work by Munro and Paterson [34]. This
algorithm has space complexity O(% log?(en)), meaning that using memory that grows poly-
logarithmically in the stream size and inversely with the accuracy parameter ¢, the quantiles
can be estimated with precision en. We refer to this algorithm as MRL. This result has since

been improved by two groups: In 2001, Greenwald and Khanna [22] designed a determin-



istic comparison-based algorithm (referred to as the GK algorithm) and showed that it uses
O(%log(en)) space in the worst case. Hung and Ting [27] showed an Q(1log(en)) lower
bound for these deterministic algorithms. In this category, the GK algorithm is generally con-
sidered to be the best but it is not known to be mergeable. In 2004, Shrivastava et al. [38] de-
signed a deterministic, fixed-universe algorithm, called Q-digest, that uses O( log(u)) space,
where [u] is a fixed finite universe from which the elements are drawn, meaning that the
universe has to be known. This algorithm was designed for quantile computation in sensor

networks and is a mergeable summary [3].

In recent years, the community has turned to improving randomized approaches. Manku
et al. [32] present an algorithm that does not need advance knowledge of n, and showed
its space requirements to be O(1log?(1)). However, they must give up the deterministic
guarantee on accuracy. Instead, they provide only a probabilistic guarantee that the quantile
estimates are within the desired precision. Agarwal et al. [3] presented a mergeable algorithm
with a space complexity of O(1log!5(1)). Karnin, Lang, and Liberty (KLL) [29] presented
the KLL sketch, a randomized algorithm based on techniques from GK and the Quantiles
sketch proposed in [3]. KLL is an asymptotically optimal non-mergeable sketch that solves
the problem using O(% loglog(%)) space. Karnin et al. also presented a mergeable KLL sketch
with O(2 log? log (%)) space bounds.

Table 1.1: Comparison between different Quantiles sketches.

Algorithm Space Randomization ~Mergeable
GK [22] O(Llog(en)) Deterministic No
Q-digest [38] O(Llog(u)) Deterministic Yes
MRL [31] O(Llog?(en)) Deterministic Yes
MRL99 [32] o1 log? (1) Randomized Yes
KLL [29] O(Lloglog(3) Randomized No
Mergeable KLL [29] O(1 log? log( $)  Randomized Yes
Quantiles Sketch [3] O(2 10g1‘5(%) Randomized Yes

The mergeable Quantiles sketch proposed by Agarwal et al. [3] is very popular and forms
a basis for many works that followed [29, 42]. The sequential solution proposed in [3] is used
by Apache DataSketches [5], and our concurrent sketch is based on it. This Quantiles sketch
is of sublinear-size and his estimates are Probably Approximately Correct (PAC), providing an
approximation within some error en with a failure probability bounded by some parameter .

In the context of sequential processing, the classic literature on sketches has focused on
inducing a small error while using a small memory footprint: The sketch is built by a single
thread, and queries are served only after the sketch construction is complete. Only recently,
we begin to see works leveraging parallel architectures to achieve a higher ingestion through-

put while also enabling queries concurrently with updates [37, 40]. Of these, the only solution



suitable for quantiles that we are aware of is the Fast Concurrent Data Sketches (FCDS) frame-
work proposed by Rinberg et al. [37]. FCDS presents a generic algorithm for parallelizing data
sketches efficiently and allowing them to be queried in real time. In general, FCDS is fast and
achieves high scalability while keeping the estimation error small. The architecture of FCDS
is based on local buffering of updates and constantly propagating results to a shared mem-
ory. Update threads ingest updates to local buffers. When a local buffer is full, its content
is propagated to a shared global sketch. A single thread, called the propagator, propagates
elements from all local buffers to the global sketch. Query threads access the global sketch.
In the FCDS-based Quantile sketch, the local buffers are sequential Quantiles sketches. Each
update thread updates its local sketch and when it is full, signals the propagator. As men-
tioned above, the propagation of the local sketches into the global sketch is made only by the
propagator while other update threads may be idle. When FCDS is used for quantiles, the
process of propagation includes a heavy merge-sort, therefore, by using a single propagator,
a sequential bottleneck is formed. Consequently, large local buffers are required to offset the
heavy sorting and keep the working threads busy during propagations (resulting in a high re-
laxation and low query freshness). The scalability of FCDS-based Quantiles sketches is thus
limited unless large buffers are used, causing query freshness to be heavily compromised (as
we show below). Our goal is to provide a scalable concurrent Quantiles sketch that retains a
small error bound with reasonable query freshness.

In Chapter 2 we formally define the system model and the problem and also overview a
popular sequential solution proposed by Agarwal et al. [3], which is used by Apache DataS-
ketches [5], on which our concurrent sketch is based.

In Chapter 3, we present Quancurrent, our highly scalable concurrent Quantiles sketch.
Like FCDS, Quancurrent relies on local buffering of stream elements, which are then prop-
agated in bulk to a shared sketch. But Quancurrent improves on FCDS by eliminating the
latter’s sequential propagation bottleneck, which mostly stems from the need to sort large
buffers.

In Quancurrent, sorting occurs at three levels — a small thread-local buffer, an interme-
diate NUMA-node-local buffer called Gather& Sort, and the shared sketch. Moreover, the
shared sketch itself is organized in multiple levels, which may be propagated (and sorted)
concurrently by multiple threads.

To allow queries to scale as well, Quancurrent serves them from a cached snapshot of
the shared sketch. This architecture is illustrated in Figure 1.1. The query freshness depends
on the sizes of local and NUMA-local buffers as well as the frequency of caching queries. We
show that using this architecture, high throughput can be achieved with much smaller buffers
(hence much better freshness) than in FCDS.

To lower synchronization overhead, we allow buffered elements to be sporadically over-
written by others without being propagated, and others to be duplicated, i.e., propagated
more than once. These occurrences, which we call holes, alter the stream ingested by the data
structure. Yet, in Chapter 4 we show that for a sufficiently large local buffer, the expected

number of holes is less than 1 and because they are random, they do not change the sampled
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distribution.
Figure 1.2 presents quantiles estimated by Quancurrent on a stream of normally dis-

tributed random values compared to an exact, brute-force computation of the quantiles, and

shows that the estimation is very accurate.
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Figure 1.2: Quancurrent’s ¢-quantiles vs. exact quantiles (normal distribution, £ = 1024, 32
update threads, 10M elements).

In Chapter 5 we empirically evaluate Quancurrent. We show an update speedup of 12x
and a query speedup of 30x over the sequential sketch, both with linear speedup. We compare
Quancurrent to FCDS, which is state-of-the-art in concurrent sketches. We show that for
FCDS to achieve similar performance it requires an order of magnitude larger buffers than
Quancurrent, reducing query freshness tenfold.

In Chapter 6 we present a formal correctness proof. Finally, Chapter 7 concludes our work

and presents some open questions for future research.

1.1 Summary of Contributions

We present Quancurrent, a scalable Quantiles sketch that retains a small error bound with

reasonable query freshness. The main technical challenges we address are:

1. High scalability. Quancurrent’s throughput increases linearly with the number of avail-
able threads. High throughput can be achieved with much smaller buffers (hence better

query freshness).

2. Accurate estimates (small error bound, fresh query). Quancurrent allows queries to oc-
cur concurrently with updates and achieves better query freshness than existing scal-

able solutions.

3. Eliminating sequential propagation bottleneck. Quancurrent allows more concurrency

than previous solutions by utilizing multiple buffers and allowing multiple threads to

10



concurrently engage in merge-sorts, which are a sequential bottleneck in previous so-

lutions.

. Minimizing synchronization. We leverage the fact that sketches are approximate to

begin with to dramatically reduce the synchronization overhead.

. Correctness semantics with guaranteed error bounds. Quancurrent query’s snapshot
is strongly linearizable with respect to an r-relaxed sequential Quantiles sketch with
r=4kS + (N — S)b.

11
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Chapter 2

Background

2.1 Preliminaries: Model and Correctness

We consider a shared memory model, where a finite number of threads execute operations on
shared objects. An operation consists of an invocation and a matching response. A history H
is a finite sequence of operation invocation and response steps. A history H defines a partial
order <7 on operations: Given operations op and op’, op <y op’ if and only if response(op)
precedes invocation(op’) in H. Two operations that do not precede each other are concurrent.
In a sequential history, there are no concurrent operations. An object is specified using a
sequential specification H, which is the set of its allowed sequential histories. An operation op
is complete in a history H if both invocation(op) and its matching response(op) are in H.
A linearization of a concurrent history H, is a sequential history H’ such that: (1) H' € H,
(2) H' contains all completed operations and possibly additional non-complete ones, after
adding matching responses, and, (3) < ;v extends <. A correctness condition for randomized

algorithms strong linearizability [21], defined as follows:

Definition 2.1.1 (strong linearizability). A function f mapping executions to histories is prefix-
preserving if for any two executions o, o’, where o is a prefix of o”, f(0) is a prefix of f(o’).
An object A is strongly linearizable if there is a prefix-preserving function f that maps every

history H of A to a linearization of H.

Our algorithm is randomized and we consider a weak adversary that determines the schedul-
ing without observing the coin-flips.

We adopt a flavor of relaxed semantics, as defined in [25]:

Definition 2.1.2 (r-relaxation). A sequential history H is an r-relaxation of a sequential his-
tory H’ if H is comprised of all but at most 7 of the invocations in H’ and their responses,
and each invocation in H is preceded by all but at most r of the invocations that precede the
same invocation in H'. The r-relaxation of a sequential specification H is the set of histories

that have r-relaxations in H:
H" £ {H'|3H € H : H is an r-relaxation of H'} .

13



2.2 Problem Definition

Given a stream A = x1,29,...,z, with n elements, the rank of some x (not necessarily in
A) is the number of elements smaller than x in A, denoted R(A, z). A quantile is a value that
is associated with a particular rank. For any 0 < ¢ < 1, the ¢ quantile of A is an element x
such that R(A,x) = |¢n].

A Quantiles sketch’s Application Programming Interface (API) is as follows:

« update(z) process stream element x;
+ query(¢) return an approximation of the ¢ quantile in the stream processed so far.

A PAC Quantiles sketch with parameters ¢, d returns element x for query(¢) after n updates
such that R(A,x) € [(¢ — €)n, (¢ + €)n], with probability at least 1 — 4.
In an r-relaxed sketch for some r > 0 every query returns an estimate of the ¢ quantile

in a subset of the stream processed so far including all but at most 7 stream elements [25, 37].

2.3 Sequential Implementation

The Quantiles sketch proposed by Agarwal et al. [3] consists of a hierarchy of arrays, where
each array summarizes a subset of the overall stream. The sketch is instantiated with a pa-
rameter k, which is a function of (e, §). The first array, denoted level 0, consists of at most 2k
elements, and every subsequent array, in levels 1, 2, ..., consists of either 0 or k elements at
any given time.

Stream elements are processed in order of arrival, first entering level 0, until it consists
of 2k elements. Once this level is full, the sketch samples the array by sorting it and then
selecting either the odd indices or the even ones with equal probability. The k sampled ele-
ments are then propagated to the next level, and the rest are discarded. If the next level is full,
i.e., consists of k elements, then the sketch samples the union of both arrays by performing
a merge sort, and once again retaining either the odd or even indices with equal probabil-
ity. This propagation is repeated until an empty level is reached. Every level that is sampled
during the propagation is emptied. Figure 2.1 depicts the processing of 4k elements.

Each element is associated with a weight, which is the number of coin flips it has “sur-
vived”. An element in an array on level i has a weight of 2%, as it was sampled i times. Thus,
an element with a weight of 2! represents 2° elements in the processed stream. For approxi-
mating the ¢ quantile, we construct a list of tuples, denoted samples, containing all elements
in the sketch and their associated weights. The list is then sorted by the elements’ values.
Denote by W (x;) the sum of weights up to element z; in the sorted list. The estimation of
the ¢ quantile is an element x;, such that W (z;) < [¢n| and W(xj411) > [¢n].

14



(@) (b) © (d) (©

Initial 2k elements After 4k elements After
ingested propagation ingested propagation
levels[0] [ 2k | [ 2k | [ 2k | [ 2k | [ 2k |
levels[1]
levels[2]

[ empty = full
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Chapter 3
Quancurrent

We present Quancurrent, an r-relaxed concurrent Quantiles sketch where r depends on sys-
tem parameters as discussed below. The algorithm uses IV update threads to ingest stream
elements and allows an unbounded number of query threads. Queries are processed at any

time during the sketch’s construction.

In Section 3.1, we present the memory model and the data structures used by Quancurrent.

Section 3.2 presents the update operation, and Section 3.3 presents the query implementation.

3.1 Memory Model and Data Structures

3.1.1 Model

We consider a shared memory model that provides synchronization variables (atomics) and
atomic operations to guarantee sequential consistency as in C++ [6]: Everything that hap-
pened before a write in one thread becomes visible to a thread that reads the written value.
Also, there is a single total order of writes that all threads observe. We use the following
sequentially consistent atomic operations (which force a full fence): fetch-and-add (F&A) [17]
and compare-and-swap (CAS) [8].

In addition, we use a software-implemented higher-level primitive, double-compare-double-
swap (DCAS) which atomically updates two memory addresses as follows:
DCAS(addry: oldy — news;, addra: olda — news) is given two memory addresses addry,
addrsy, two corresponding expected values old;, olds, and two new values newi, news as
arguments. It atomically sets addr; to new; and addrs to news only if both addresses match
their expected values, i.e., the value at addr; equals old; and the value at addry equals olds.
DCAS also provides a wait-free DCAS_READ primitive, which can read fields that are concur-
rently modified by a DCAS. DCAS can be efficiently implemented using single-word CAS [24,
23].

17



3.1.2 Data Structures

Quancurrent’s data structures are described in Algorithm 3.1 and depicted in Figure 3.1. Sim-
ilarly to the sequential Quantiles sketch, Quancurrent is organized as a hierarchy of arrays
called levels. The maximum number of levels is MAX_ LEVEL. Each level can be empty,
full, or in propagation. The variable tritmap maintains the states of all levels. Tritmap is an
unsigned integer, interpreted as an array of trits (trinary digits). The trit ¢ritmap[i| describes
level i’s state: if tritmapli] is 0, level i contains 0 or 2k ignored elements and is considered to
be empty. If tritmap|i] is 1, level i contains k elements and is deemed full, and if it is 2, level
¢ contains 2k elements and is associated with the propagation state. Each thread has a local
buffer of size b, localBuf[b]. Before being ingested into the sketch’s levels, stream elements
are buffered in threads’ local buffers and then moved to a processing unit called Gather& Sort.
The Gather& Sort object has two 2k-sized shared buffers, G& SBuffer|2], each with its own
index specifying the current location, as depicted in Figure 3.1a.

The query mechanism of Quancurrent includes taking an atomic snapshot of the lev-
els. Query threads cache the snapshot and the tritmap that represents it in local variables,
snapshot and myTrit, respectively. As the snapshot reflects only the sketch’s levels and not
G&SBuffers or the thread’s local buffers, Quancurrent is (4kS + (N — S)b)-relaxed Quantiles
sketch where S is the number of NUMA nodes.

Algorithm 3.1 Quancurrent data structures

1: Parameters and constants:

2 MAX LEVEL

3 k > sketch level size
4: b > local buffer size
5: S > #NUMA nodes
6

7

8

9

: Shared objects:
tritmap < 0
levels{f MAX_LEVEL]

11: NUMA-local objects: > shared among threads on the same node
12: G&SBuffer[2][2k]

13: indez[2] + {0,0}

14:

15: Thread local objects:

16: local Buf[b]

17: my Trit > used by query
18: snapshot > used by query
3.2 Update

The ingestion of stream elements occurs in three stages: (1) gather and sort, (2) batch update,

and (3) propagate level. In stage (1), stream elements are buffered and sorted into batches of 2k

18



through a Gather& Sort object. Each NUMA node has its designated Gather& Sort object,
which is accessed by NUMA-local threads. Stage (2) executes a batch update of 2k elements
from the Gather& Sort object to levels|0]. Finally, in stage (3), levels|0] is propagated up the
levels of the hierarchy.

In the first stage, threads first process stream elements into a thread-local buffer of size b.
Once the buffer is full, it is sorted and the thread reserves b slots on a shared buffer in its node’s
Gather&Sort unit. It then begins to move the local buffer’s content to the shared buffer. The
shared Gather&Sort buffer contains 2k elements, and its propagation (during Stage 2) is not
synchronized with the insertion of elements. Thus, some reserved slots might still contain old
values, (which have already been propagated), instead of new ones. As the batch is a sample
of the original stream, we can accept the possible loss of information in order to improve
performance. Below, we show that the sampling bias this introduces is negligible.

The pseudo-code for the first stage is presented in Algorithm 3.2. To insert its elements
to the shared buffer, a thread tries to reserve b places in one of the shared buffers using F&A
(Line 27). If the index does not overflow, the thread copies its local buffer to the reserved slots
(Line 29). We refer to the thread that fills the last b locations in a G&SBuffer as the owner of the
current batch. The batch owner creates a locally sorted copy of the shared buffer and begins
its propagation (Lines 31-32). As each update thread sorts its local buffer before moving it to
the G&SBuffer, When full, the G&SBuffer consists of % sorted arrays (referred to as regions),
each of size b. As such, the owner performs %-way merge to sort the shared buffer.

Note that the local buffer is not atomically moved into the shared buffer (Line 29 is a
loop). Thus, the owner might begin a propagation before another thread has finished moving
its elements to the shared buffer. In this case, the old elements already contained within the
G&SBuffer are taken instead. Furthermore, upon moving its elements later, the writer thread
might overwrite more recent elements. In other words, during this stage, stream elements
may be duplicated, and new elements may be dropped. We call both of these occurrences
holes and analyze their implications in Section 4.1. These holes may cause some regions in
the G&SBuffer to be not sorted when the owner is about to create a sorted local copy of
the shared buffer. Thus, the owner thread creates a local copy of the shared buffer and then
performs a single pass to make sure each region is monotonic and, if not, sorts it. Lastly, the
owner uses %—Way merge to sort the full buffer.

In the second stage, the owner inserts its local sorted copy of the shared buffer into level
0 using a DCAS. The batch of 2k elements is only inserted when level 0 is empty, reflected
by the first digit of the tritmap being 0. We use DCAS to atomically update both levels[0]
to point to the new sorted batch and tritmap to indicate an ongoing batch update (reflected
by setting tritmap[0] to 2). The DCAS might fail if other owner threads are trying to insert
their batches or propagate them. The owner keeps trying to insert its batch into the sketch’s
first level until a DCAS succeeds, and then resets the index of the G&SBuffer to allow other
threads to ingest new stream elements. The pseudo-code for the second stage is presented in
Algorithm 3.3, and an example is depicted in Figure 3.1b.

In the beginning of the third stage, level 0 points to a new sorted copy of a G&SBuffer
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Algorithm 3.2 Stage 1: gather and sort

19: procedure UPDATE(Z)

20: add z to localBuf > thread-local
21: if —localBuf full() then

22: return

23: end if

24: sort local Buf

25: i1+ 0

26: while true do > insert to Gather&Sort unit
27: idx < index[7]. F&A(b)

28: if idz < 2k then

29: move localBuf to G& SBuffer(i]{idz, ..., idx + b]

30: if idx + b = 2k then > owner, filled buffer
31: myCopy < sorted copy of G& SBuffer]i]

32: batchUpdate(i,myCopy)

33: end if

34: return

35: end if

36: 14 1

37: end while

38: end procedure

Algorithm 3.3 Stage 2: batch update

39: procedure BATCHUPDATE(,base_copy)

40: while —DCAS(levels[0]: 1. — base_copy, tritmap[0]: 0 — 2 do
41: index[i] < 0

42: propagate(0)

43: end while

44: end procedure

array and tritmap[0]=2. During this stage, the owner thread propagates the newly inserted
elements up the levels hierarchy iteratively, level by level from level 0 until an empty level
is reached. The pseudo-code for the propagation stage is presented in Algorithm 3.4. On
each call to propagate, level [ is propagated to level [ + 1, assuming that level [ contains 2k
sorted elements and tritmap[l] = 2. If tritmap[l + 1] = 2, the owner thread is blocked by
another propagation from [ + 1 to [ + 2 and it waits until ¢ritmap[l + 1] is either a 0 or
1. The owner thread samples %k elements from level [ and retains the odd or even elements
with equal probability (Line 49). If tritmap[l + 1] is 1, then level [ + 1 contains k elements.
The sampled elements are merged with level [+1 elements into a new 2k-sized sorted array
(Line 51). We then (in Line 52) continuously try, using DCAS, to update levels[l+1] to point
to the merged array and atomically update tritmap such that tritmap[l] < 0, reflecting level
l is available, and tritmap[l+1] < 2, reflecting that level [+1 contains 2k elements. After a
successful DCAS, we clear level  (set it to L) and proceed to propagate the next level (Line 55).
If tritmap[l + 1] is 0, then level [ + 1 is empty. We use DCAS (Line 57) to update levels[l + 1]

to point to the sampled elements and atomically update tritmap so that tritmap[l] becomes 0,
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2k

(a) Gather& Sort object.
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levels[0
[1
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[3

]
]
]
]

[MAX LEVEL]| —— |

(b) Batch update into levels[0].

Figure 3.1: Quancurrent’s data structures.

and tritmap[l+1] becomes 1 (containing k elements). After a successful DCAS, we clear level

[ (set it to L) and end the current propagation.

Propagations of different batches may occur concurrently, i.e., level propagation of levels
l and I’ can be performed in parallel. Figure 3.2 depicts an example of concurrent propagation

of two batches.

3.3 Query

Queries are performed by an unbounded number of query threads. A query returns an ap-
proximation based on a subset of the stream processed so far including all elements whose
propagation into the levels array began before the query was invoked. The query is served
from an atomic snapshot of the levels array. The query algorithm is given in Section 3.3.1 and

the snapshot’s correctness is proven in Section 3.3.2.
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Algorithm 3.4 Stage 3: Propagation of level [

45: procedure PROPAGATE(()
46: if [|> MAX_LEVEL then

47: return

48: end if

49: newLevel < sampleOddOrEven(levels[l]) > choose odd or even indexed elements
randomly

50: if tritmap[l+1] = 1 then > next level is full

51: newLevel <— merge(newLevel, levels[l+1])

52: while —DCAS(levels[l+1]: levels[l+1] — newLevel, tritmap[l, I+1]: [2,1] —
0,2)) do {

53: end while

54: levels[l] < L > clear level

55: return propagate(/+1)

56 end if

57: while -DCAS(levels[I+1]: L — newLevel, tritmap[l, [+1]: [2,0] — [0,1]) do {}
58: end while

59: levels[l] + L > clear level
60: end procedure

3.3.1 Query Algorithm

The pseudo-code is presented in Algorithm 3.6. Instead of collecting a new snapshot for each
query, we cache the snapshot so that queries may be serviced from this cache, as long as the
snapshot isn’t too stale. The snapshot and the tritmap value that represents it are cached
in local variables, snapshot and myTrit, respectively. Query freshness is controlled by the
parameter p, which bounds the ratio between the current stream size and the cached stream
size. Aslong as this threshold is not exceeded, the cached snapshot may be returned (Lines 75-
76). Otherwise, a new snapshot is taken and cached.

The snapshot is obtained by first reading the tritmap, then reading the levels from 0 to
MAX_LEVFEL, and then reading the tritmap again. If both reads of the tritmap represent the
same stream size then they represent the same stream. The set of levels read between the two
tritmap’s reads are saved in snapLevels. We can use the levels read to reconstruct some state
that represents this stream. The process is repeated until two such tritmap values are read. For
example, focusing on the last two phases of the propagation in Figure 3.2, let’s assume a query
thread T}, reads tm1 = 00202, then reads the levels from levels[0] to levels[4] as depicted in
Figure 3.2 (between the dashed lines), and then read tm2 = 00210. The two tritmap reads
represent the same stream of size 10k, thus a snapshot representing the same stream can be
constructed from the levels read. The pseudo-code for calculating the stream size is presented
in Algorithm 3.5. Each level is read atomically as the levels’ arrays are immutable and replaced
by pointer swings. The snapshot is a subset of the levels summarizing the stream. To construct
the snapshot, the collected levels are iterated over, in reversed order, from MAX_LEVEL to
0, and level i is added to the snapshot only if the total collected stream size (including level

?) is less than or equal to the stream size represented by the tritmap (Line 87). Back to our
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Figure 3.2: Quancurrent’s propagation.
(a) The owner of batch i, owner(z), inserts batch i to level 0 and atomically updates tritmap|0] to 2.
(b) owner(i) merges level 0 with level 1 and changes ¢ritmap[1, 0] from [1, 2] to [2, 0].
(c) owner(i) clears level 0.
(d) owner(i + 1) inserts its batch to level 0 and atomically updates ¢ritmap|0] to 2.
(e) owner(i) merges level 1 with level 2, and sets tritmap[2,1] to [2,0]. Batch ¢ + 1 is still blocked
because level 1 has not been cleared yet.
(f) owner(z) clears level 1.
(g) Now owner(i + 1) successfully merges level 0 with the empty level 1, and sets tritmapl[1, 0] to
[1,0].

last example, the size of each level collected by 7}, is 2k, k, 2k, 0, 0 (in descending order). As
explained, to construct the snapshot, we go over the collected levels from snapLevels[4] to
snapLevels|0]. By reading snapLevels[1], the total stream size represented by the current
snapshot is 0 + 0 + 4 - 2k 4+ 2 - k = 10k. As the stream size represented by ¢tm1 and tm2
is 10k, the construction of the snapshot is done and all elements of the processed stream are
represented exactly once. The tritmap myTrit maintains the total size of the collected stream
and each trit describes the state of a collected level. If level i was collected to the snapshot,
the value of myTrit[7] is the size of level i divided by & (Line 89).

Aslevels propagate from lowest to highest, reading the levels in the same direction ensures
that no element would be missed but may cause elements to be represented more than once.
Building the snapshot from highest to lowest ensures that each element will be accounted
once. In other words, reading the levels from lowest to highest and building the snapshot
from highest to lowest ensures that an atomic snapshot is collected, as proven in the following

section.

3.3.2 Query’s Snapshot Correctness

Let 0 be an execution of Quancurrent and let ¢ be a query operation executed by a query
thread 7" in 0. Let tm?2 be a response of the last read operation of the variable tritmap during

q, denoted op2, and let tm1 be the response of the penultimate read operation of tritmap,
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Algorithm 3.5 Tritmap

61: procedure STREAMSIZE( )

62: curr_stream < 0

63: fori«+0,..., MAX_LEVEL do

64: weight +— 2°

65: if tritmap[i] = 1 then

66: curr_stream <— curr_stream + weight-k
67: else if tritmap[i] = 2 then

68: curr_stream <— curr_stream + weight-2k
69: end if

70: end for

71: return curr_stream

72: end procedure

denoted op1, both executed by T between the invocation of the query ¢, invocation(q), and
the response of the same query, response(q). Note that op; precedes ops. Let A be the stream
represented by the value of tm1. As tritmap represents the state of each level in Quancurrent,
at the point of tm1, all the elements in Quancurrent summarize the stream A. We denote by
| A| the size of the stream. Let snapLevels be the set of all levels read by 1" between op; and
opa, 1.e., snapLevels[i] points to the response of the read of level i between op; and opy. We
will prove that the constructed snapshot in Algorithm 3.6, Lines 83-94, summarizes the same
stream A. By definition, the state of snapshot is represented by the variable myT'rit.

First, we show that tm1 and ¢tm2 represent the same stream, i.e. A.

Lemma 3.3.1. Let tm1 and tm?2 be responses of two read operations of tritmap. Iftm1 and

tm2 represent streams with equal sizes then tm1 and tm2 represent the same stream.

Proof. As described in Section 3.1.2, the ¢’th trit of the variable tritmap represents the state
of Quancurrent’s ¢’th level. Using Algorithm 3.5, we can calculate the size of the stream
represented by a certain value of tritmap. The variable tritmap is atomically updated by DCAS
operations such that the size of the stream represented by it is monotonic increasing. let tmy,
be a value of the tritmap before an atomic DCAS, and let ¢tm, be the value of the tritmap
after this DCAS. In case of DCAS failure, the value of tritmap has not changed. Thus, tm;,
and tm, represent the same stream. In case the DCAS succeeds, the value of the tritmap is
updated. Using Algorithm 3.5, we show that the size of the stream represented is monotonic

increasing;:
o tritmap[0]: [0] — [2] (Algorithm 3.3, Line 40) —
stream_size(tmg) — stream_size(tmy) = (2° - 2k) — (2° - 0) = 2k
o tritmapli,t + 1]: [2,1] — [0, 2] (Algorithm 3.4, Line 52) -
stream_size(tmg) — stream_size(tmy) = (20 - 2k + 2771 . k) — (2771 . 2k) =0
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Algorithm 3.6 Query

73: procedure QUERY(¢)

74: tm1 < tritmap
tml.streamSize()

75 if myTrit.streamSize() <p then

76: return snapshot.query(¢)

77: end if

78: repeat

79: tml1 < tritmap

80: snapLevels < read levels 0 to MAX_LEVEL
81: tm2 < tritmap

82: until ¢m7 .streamSize() = tm2.streamSize()

83: myTrit < 0

84: snapshot < empty snapshot

85: for i +— MAX_LEVEL,...,0do

86: weight +— 2°

87: if snapLevels|i].size()-weight+ myTrit.streamSize()<tm1.streamSize() then
88: add snapLevels[i] to snapshot

89: myTrit[i] < snapLevels[i].size()/k

90: if myTrit.streamSize()=tm 1 .streamSize() then
91: break

92: end if

93: end if

94: end for

95: return snapshot.query(¢p)

96: end procedure

o tritmapli, ¢ + 1]: [2,0] — [0, 1] (Algorithm 3.4, Line 57) -

stream_size(tmg) — stream_size(tmy) = (2° - 2k) — (277 - k) =0

Thus, the tritmap is updated such that the size of the stream represented by it is monotonic

increasing. u

Second, we show that snapLevels contains all sampled elements summarizing the stream
A in the sketch.

Lemma 3.3.2. The set of levels, snapLevels, read between the two tritmap’s reads, op; and

opa, contains all the elements contained in Quancurrent at the point of tm1.

Proof. Let = be an element in level j immediately after opl response. If z exists in level j
during the read of sketch’s levels in Algorithm 3.6 Line 80, then we are done. Otherwise,
a propagation occurred in between the reads such that level j was merged with the next
level and cleared. During this merge, all level j’s elements, including z, were sampled and
propagated to level j + 1. If = exists in level j 4 1 in the set snapLevels then we are done,
if not, we apply the above argument again. This continues up to MAX_LEVEL and therefore

snapLevels contains the element x. |
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The following refers to the construction of the subset snapshot fromlevel MAX_LEVEL
to 0:

Lemma 3.3.3. While iterating snapLevels[] from level MAX_LEVEL to 0 in Algorithm 3.6,
Lines 85-94, if level j (snapLevels[j]) contains an element that is in snapshot, then all elements

in level j are also in this snapshot.

Proof. During a call to the procedure propagate with level j, the elements in that level are
sampled and merged with level j + 1, resulting in level j 4 1 representing also the elements
of (former) level j. Let x be an element represented by level j in the set snapLevels. x is
also represented by level ¢ such that level ¢ is in the current snapshot and i > j. Considering
the process of propagation from level j to level ¢, it follows from the above that level 7 also

represents all the elements in level j. |

As described in Section 2.3, each element in level j represents 27 elements from the pro-

cessed stream.

Lemma 3.3.4. While iterating snapLevels[] from level MAX_LEVEL to 0 in Algorithm 3.6,
Lines 85-94, if level j (snapLevels[j]) contains an element that is in snapshot, then this element
will not be inserted to snapshot in the following iterations of lower levels, i.e., an element is

inserted to snapshot at most once.

Proof. We prove that if level j represents new elements that are not represented by snapshot,
the size of the sub-stream left to represent is at least the size of the representation of level j.
We show this by contradiction. Assume by contradiction that the size of the sub-stream left
to represent is smaller than the size of the representation of level j such that |snapshot| U
|level[j]| > |A]. It follows from Lemma 3.3.2 that level j contains at least one duplicated
element (an element already represented by level i in snapshot such that ¢ > j). From
Lemma 3.3.3 all level j’s elements are duplicated and already being represented by the current
snapshot. Contradiction.

Now, we prove that if level j represents elements already represented by the current snap-
shot, the sub-stream left to represent is smaller than the representation of level j. Assume
that an element x is represented by the current snapshot. Let level j be the second level to
be added to snapshot that also represents x (the first time to duplicate the representation of
x). Note, element x has two representations in the current snapshot. From Lemma 3.3.3, all
elements in level j are already represented by this snapshot. If level j contains 2k elements,
the size of the sub-stream represented by level j is 2k - 27 and the size of the sub-stream
left to represent is at most represented by levels 0 to j — 1, meaning the size is at most
2k(1 + 2+ --- 4+ 2071 = 2k(2/ — 1) which is smaller than the size of sub-stream repre-
sented by level j. If level j contains k elements and is already represented by level ¢, 7 > j, in
snapshot, level 7 — 1 must have propagated level j deeper, i.e. level j — 1 is also represented
by level 7, therefore, also already represented by snapshot. Level j represents k - 27. The size

of the sub-stream left to represent is at most represented by levels 0 to j — 2, meaning the size
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is at most 2k(1 42+ - - - +2972) = (27~ — 2), which is smaller than the size of sub-stream
represented by level j. ]

Lemma 3.3.5. The snapshot constructed in Algorithm 3.6, Lines 83-94, summarizes the same

stream, A, as represented by the second tritmap read, tm2, in Algorithm 3.6, Line 81 (in the last

iteration).
Proof. From Lemma 3.3.4 |snapshot| = |A| and every element is represented at most once in
the constructed snapshot. ]
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Chapter 4
Analysis

In Section 4.1 we analyze the expected number of holes, and in Section 4.2 we analyze Quan-

current’s error.

4.1 Holes Analysis

Because the update operation moves elements from a thread’s local buffer to a shared G&SBuffer
non-atomically, holes may occur when the owner thread reads older elements that were writ-
ten to the shared buffer in a previous batch. The missed (delayed) writes may later overwrite
newer writes. Together, for each hole, an old value is duplicated and a new value is dropped.
As such, we created a dependency between samples because we dropped an independent

sample and gave double weight to another.

We analyze the expected number of holes under the assumption of a uniform stochastic
scheduler [4], which schedules each thread with a uniform probability in every step. That is,
at each point in the execution, the probability for each thread to take the next step is % where
N 1is the number of threads. Note that holes are random and the duplicate/missing elements
are drawn from the stream’s distribution. Therefore, they do not affect the samples’ mean and
only affect the accuracy of estimation. Below we show that the expected number of holes is

fairly small and that they have a marginal effect on the estimation accuracy.

Denote by H the total number of holes in some batch of 2k elements. G&SBuffer’s array
is divided into % regions, each consisting of b slots populated by the same thread. Denote by

Hy, ..., Ha the number of holes in regions 1, . . ., 2k respectively.
b

The slots in region j are written to by the thread that successfully increments the shared
index from (j — 1)b to jb. We refer to this thread as 7. Note that multiple regions may
have the same writing thread. The shared G&SBuffer’s owner, Tp, is T% . To initiate a batch
update, T creates a local copy of his G&SBuffer by iteratively reading the array. A hole is
read in some region j if Tp reads some index 7 + 1 in this region before the writer thread 7}

writes to the corresponding index in the same region.
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Analysis of H;. When Ty increments the index from 2k — b to 2k, T; may have completed
any number of writes between 0 and b to region j. We first consider the case that 7} hasn’t
completed any writes. In this case, for a hole to be read in slot ¢ 4+ 1 of region j, T’s read of
slot ¢ + 1 must overtake 7’s write of the same slot. To this end, TH must write b values (from
its own local buffer), read (7 — 1)b values from the first j — 1 regions, and then read values
from slots 1,...,4 4 1 in this region (a total of b + (j — 1)b + i + 1 steps), before T} takes
i + 1 steps. The probability that T\ reads a hole in region j for the first time, in slot ¢ + 1 is:

7;; = Plhole inslot i + 1 | no hole in slots 1. . 4]

(4.1)
- Plno hole inslots 1...I].

For a hole to be read in slot ¢ 4 1 of region j (not necessarily for the first time in this region),
To must take b + (j — 1)b + i + 1 steps while T takes at most i steps, with Tp’s read of
slot 7 + 1 being last. But if T} takes fewer than ¢ steps, a hole is necessarily read earlier than
slot 7 + 1. Therefore, we can bound 7; ; by considering the probability that 77 takes exactly ¢
steps while T takes b+ (j — 1)b + i steps, and then T takes a step. Ignoring steps of other
threads, each of T} and T has a probability of % to take a step before the other. Therefore,

1\ Jb+2i+1 b+ 2i

Note that this includes schedules in which T reads holes in previous slots in the same region,
therefore it is an upper bound. Given that T); has not yet written in region j, the probability,

pj, that Tp reads at least 1 hole in region j is bounded as follows:

b—1
P < T (43)
=0

In the supplementary material (Claim A.3) we prove that the above upper bound of ; ; (Equa-

tion 4.2) is monotonically increasing for ¢ € 0,1,...,b — 1 and for j € IN. Therefore,

1 7b+2b—1 jb 25— 92

Using Equation 4.3,

b—1 jb+2b—1 [ ;
1\/ jb+2b—2
- < E — 4.

1\7o+20=1 (ip 2 — 2
<pb.-[Z= 4.
<b (2) ( b1 (4.6)

If T; has completed any number of writes to region j, the probability that 7» reads holes is
even lower. Therefore, the probability that H; > 1 is bounded from above by p;. Using this,

30



we bound the expected total number of holes in region j:

E[Hj)=PH;=0)-0+P(H;=1)-1+---

To can read at most b holes, therefore,

l;[}iﬁ]‘< b-(f)(ffj:: 1)-¥"‘ +-]j(ffj

—b-P(H; > 1) <b-p;.

Next we show that F[H;| < 1.4 for all b.

Lemma 4.1.1. E[H;] < 1.4 forallb € IN.

Proof. Denote

e (1) (422)

From Equation 4.9, F[H;] is bounded by

3b—1 _
sz () (7)o

First, we show that ¢(b) is monotonically decreasing for b > 12.

3642
)

gb+1) _ (b+1)* (%

g(b)

In the Supplementary Material (Claims A.4-A.6), we show that for b > 12

g(b+1)
g9(b)

-

2

v (3)

2 2

1)3. (3) (b+1)* 3b—1 3b+1
b? b 2b+1

2

Jun

(B <

Therefore, g(b) is monotonically decreasing for b > 12. Lastly,

That is, for all b € IN,

max
1<b<12

{f(6)} = F(9) =1.305 < 1.4.

g(b) < 1.4.
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3
<3

(4.7)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)
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From Equation 4.11 and Equation 4.16,

Vb e N, E[H] < 1.4. -

Lemma 4.1.2. IfE[H;] < o, then E[H; 1] < 3o forallb € Nand j > 1,5 € IN.

Proof. From Equation 4.9,

1\%+2=1 (ip 4 2p — 2
E[H;] < b (2) K b1 ) (4.17)
1\+30=1 [ 5h 4 3p — 2
E[Hj1] <b? (2) (7 b1 | (4.18)
Denote
1 bj+2b—1 : 2 — 92
a; 2 b? (2> : ]b;:_bl . (4.19)
We show that E[H, 1] < 2.
1\%430=1 (ip 4 3p — 2
E[Hj1] <b? <2> (7 b1 (4.20)
1 bj+2b—1 b—1 [ _
— T2 (1> : (1> Jo+3b—2 (4.21)
2 2 2 b—-1
1 1 bj+2b—1 ib 2 — 92
Using Claim A.7 < -2 () Al (4.22)
2 2 b—1
1
= 505 (4.23)
Therefore, E[H, 1] < %aj. [ ]

Using the linearity of expectation, we bound the expected number of holes in a batch:

]

E[H] = E[H\]+E[H)]+ - +E |H:

S
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From Lemma 4.1.1 and Lemma 4.1.2,

N
=

E[H] =) E[H]] (4.24)

j=1
Z 1\J-1

< - E[H,] (4.25)
]Z::l <2) '
o0 1 j_l

< - - E[H;] (4.26)
; <2> '
o0 1 j_1

< - 1.4 (4.27)
> (3)

<2
<2-14=28 (4.28)

Together, this implies that E[H| < 2.8 forall b € IN.

4.2 Error Analysis

The source of Quancurrent’s estimation error is twofold: (1) the error induced by sub-sampling
the stream, and (2) the additional error induced by concurrency. For the former, we leverage
the existing literature on the analysis of sequential sketches. We analyze the latter. As the
expected number of holes is fairly small and the holes are random, we disregard their effect

on the error analysis.

First, our buffering mechanism induces relaxation. Let S be the number of NUMA nodes.
Recall that each NUMA node has a Gather&Sort object that contains two buffers of size 2k.
In addition, each of the N update threads has a local buffer. When the G&SBuffer is full,
the local buffer of the owner is empty so at most N — S threads might have locally buffered
elements. Therefore, the buffering relaxation r is 4kS + (N — S)b.

Rinberg et al. [37] show that for a query of a ¢-quantile, an r-relaxation of a Quantiles

sketch with parameters €. and J., returns an element, x, such that

rank(x) € [(¢ — € )n, (¢ + € )n]

with probability at least (1 — d.), for €, = €. + = (1 — €.).

On top of this relaxation, our cache mechanism induces further staleness. Here, the stal-
eness depends on p. Let ngy be the stream size of the cached snapshot, and let 1,,¢,, be the
current stream size. If e /Noig < p then the query is answered from the cached snapshot.
Denote p = 1 + € for some ¢ > 0. The rank of the element returned by the cached snapshot

is in the range:
qu - 57‘) Nold, (¢ + 61“) nold] (4.29)
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As Nolq < Nipew and € > 0 then,

(¢ + 67“) Nold < (Qb + 67“) Npew < ((;5 + (6/ + Er)) Nnew

On the other hand, as n,;g > nn%’

(6 — €) Nota > (¢ — €,) 2 = (p=1+¢)

¢ )n B

14 ¢€ 1+6 new

2
14 ¢€ S 1l+e)

(5
( ’

(¢1+6 e € )nmw: 0< ¢
o

(-

1

<

1+¢ 1+¢ 1+¢ 1+6’_1+6’)
€
6/ 1—|—6 Nnew =
1
1+, 6+€r)>nnew2 (1+6,§1)
(¢ (6 + 67’)) Nnew

Because ¢ < 1 and € >Othen, 1+E §1+6 <1. Alsol+¢€ >1thenH_€ <1.

Therefore, the query returns a value within the range

[(¢—€)n, (¢ +€)n]

A
fore = ¢, +¢€.
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Chapter 5
Evaluation

In this chapter, we measure Quancurrent’s throughput and accuracy of estimation. Section 5.1
presents the experiment setup and methodology. Section 5.2 presents throughput measure-
ments and discusses scalability. Section 5.3 experiments with different parameter settings,
examining how performance is affected by query freshness. Section 5.4 presents an accuracy

of estimation analysis. Finally, Section 5.5 compares Quancurrent to the state-of-the-art.

5.1 Setup and Methodology

We implement Quancurrent in C++. Our memory management system is based on IBR [43],
an interval-based approach to memory reclamation for concurrent data structures. The ex-
periments were run on a NUMA system with four Intel Xeon E5-4650 processors, each with
8 cores, for a total of 32 threads (with hyper-threading disabled).

Each thread was pinned to a NUMA node, and nodes were first filled before overflowing
to other NUMA nodes, i.e., 8 threads use only a single node, while 9 use two nodes with 8
threads on one and 1 on the second. The default memory allocation policy is local allocation,
except for Quancurrent’s shared pointers. Each Gather&Sort unit is allocated on a different
NUMA node and threads update the G&SBuffers allocated on the node they belong to. The
stream is drawn from a uniform distribution unless stated otherwise. Each data point is an

average of 15 runs, to minimize measurement noise.

5.2 Throughput Scalability

We measured Quancurrent’s throughput in three workloads: (1) update-only, (2) query-only,
and (3) mixed update-query. In the update-only workload, we update Quancurrent with a
stream of 10M elements and measure the time it takes to feed the sketch. For the other two
workloads, we pre-fill the sketch with a stream of 10M elements and then execute the work-
load (10M queries only or queries and 10M updates) and measure performance. Figure 5.1
shows Quancurrent’s throughput in those workloads with £ = 4096 and b = 16,

As shown in Figure 5.1a, Quancurrent’s performance in the update-only workload with
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Figure 5.1: Quancurrent’s throughput, £ = 4096, b = 16.

a single thread is similar to the sequential algorithm and with more threads it scales linearly,
reaching 122 the sequential throughput with 32 threads. We observe that the speedup is faster
with fewer threads, we believe this is because once there are more than 8 threads, the shared
object is accessed from multiple NUMA nodes.

Figure 5.1b shows that, as expected, the throughput of the query-only workload scales
linearly with the number of query threads, reaching 30z the sequential throughput with 32
threads.

In the mixed workload, the parameter p is significant for performance - when p = 1
(€' = 0, no caching), a snapshot is reproduced on every query. Figure 5.1c presents the update
throughput (left) and query throughput (right) in the presence of 1 or 2 update threads, with
staleness thresholds of p = 1 (¢ = 0) and p = 1.05 (¢ = 0.05). We see that the caching
mechanism (p > 1) is indeed crucial for performance. As expected, increasing the staleness
threshold allows queries to use their local (possibly stale) snapshot, servicing queries faster
and greatly increasing the query throughout. Furthermore, more update threads decrease the
query throughput, as the update threads interfere with the query snapshot. Finally, increasing
the number of query threads decreases the update throughput, as query threads interfere with
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update threads, presumably due to cache invalidations of the shared state.

5.3 Parameter Exploration

We now experiment with different parameter settings with up to 32 threads. In Figure 5.2a we
vary k from 256 to 4096, in update-only scenario with b = 16 and up to 32 update threads.
We see that the scalability trends are similar, and that Quancurrent’s throughput increases
with k, peaking at £ = 2048, after which increasing % has little effect. This illustrates the
tradeoff between the sketch size (memory footprint) to throughput and accuracy.

Figure 5.2b experiments with different local buffer sizes, from 1 to 64, in an update-only
scenario with k¥ = 4096 and up to 32 update threads. Not surprisingly, the throughput in-
creases as the local buffer grow as this enables more concurrency.

In Figure 5.2c we vary p, in a mixed update-query workload with 8 update threads, 24
query threads, & = 1024, and b = 16, exploring another aspect of query freshness versus
performance. As expected, increasing p has a positive impact on query throughput, as the
cached snapshot can be queried more often. Figure 5.2¢ also shows the miss rate, which is the

percentage of queries that need to re-construct the snapshot.

5.4 Accuracy

To measure the estimate accuracy, we consider a query invoked in a quiescent state where no
updates occur concurrently with the query. Figure 5.3 shows the standard error of 1M estima-
tions in a quiescent state.We see that Quancurrent’s estimations are similar to the sequential
ones using the same k, and improve with larger values of k as known from the literature on
sequential sketches [3].

To illustrate the impact of k visually, Figure 5.4 compares the distribution measured by
Quancurrent (red open-circles) to the exact (full information) stream distribution (green CDF
filled-circles). In Figure 1.2 (in the introduction), we depict the accuracy of Quancurrent’s
estimate of a normal distribution with £k = 1024. Figure 5.4b (left) shows that when we
reduce k to 32, the approximation is less tight while for k = 256 (Figure 5.4b right) it is very

accurate. We observe similar results for the uniform distribution in Figure 5.4a.

5.5 Comparison to State of the Art

Finally, we compare Quancurrent against a concurrent Quantiles sketch implemented within
the FCDS framework [37], the only previously suggested concurrent sketch we know that
supports quantiles. Figure 5.5 (and Table 5.1) show the throughput results (log scale) for 8,
16, 24 and 32 threads and k£ = 4096. FCDS satisfies relaxed consistency with a relaxation of

up to 2N B, where N is the number of worker threads and B is the buffer size of each worker.
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Recall that Quancurrent’s relaxation is at most r = 4kS + (N — S)b. Thus:

Treps = 2N B (5.1)
rQuanCurrent - 4kS + (N - S)b (52)

For a fair comparison, we compare the two algorithms in settings with the same relaxation,

as follows:

Trcps = TQuancurrent (53)

2NB = 4kS + (N — S)b (5.4)
_4kS+ (N = S)b

B= N (5.5)

Given the sketch parameter &, the number of update threads IV, the number of NUMA nodes
S, and a series of Quancurrent’ local buffer sizes b; such that b = {Qi 21 =0,1,...}, we
calculate the corresponding B; values (FCDS’s local buffer size), using Equation 5.5.

The results are listed in Table 5.1. Note that the size of the local buffer b is bounded by
the size of the G&SBuffer array, which is 2k. Each row lists the parameters needed to get
equal relaxation in both algorithms. We calculated the throughput for each algorithm and
the results are shown in Figure 5.5. For clarity, some points with the same relaxation were
colored the same in both lines. In addition, we specify the size of the buffer.

For 8 update threads (S = 1) and b = 2048, the relaxation of Quancurrent is r ~ 30K.
The same relaxation in FCDS with the same number of update threads is achieved with a buffer
size of B = 1920. With 8 threads, Quancurrent reaches a throughput of 22 M ops/sec for a re-
laxation of 30 K whereas FCDS reaches a throughput of 25.8 M ops/sec for a much larger re-
laxation of 131 K. Also, with 32 threads, Quancurrent reaches a throughput of 62M ops/sec
for a relaxation of 123K, but FCDS only reaches a throughput of 19.4M ops/sec with a
relaxation of more than 500K.

Overall, we see that FCDS requires large buffers (resulting in a high relaxation and low
query freshness) in order to scale with the number of threads. This is because, unlike Quan-
current, FCDS uses a single thread to propagate data from all other threads’ local buffers
into the shared sketch. The propagation involves a heavy merge-sort, so large local buffers
are required in order to offset it and keep the working threads busy during the propagation.
In contrast, Quancurrent’s propagation is collaborative, with merge-sorts occurring concur-
rently both at the NUMA node level (in Gather&Sort buffers) and at multiple levels of the
shared sketch.
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Table 5.1: Quancurrent vs. FCDS, k = 4096, #keys = 10M

Quancurrent ‘ FCDS

N | b Throughput[2] | r | B Throughput|£]
8 1 7.1 M 16.4k 1024 45M
4 10.9M 16.4k 1026 46 M
8 124 M 16.4k 1028 46 M
16 13.5M 16.5k 1031 4.6 M
32 14.6 M 16.6k 1038 45M
64 16M 16.8k 1052 45M
128 17.5M 173k 1080 45M
256 19.2M 18.2k 1136 46 M
512 20.7M 20k 1248 4.6 M
1024 20M 23.6k 1472 4.6 M
2048 22M 30.7k 1920 46 M
4096 13M 45.1k 2816 4.7M
8192 7.13M 73.7k 4608 47M
131k 8192 25.8M
16 | 1 14.1M 32.8k 1024 44M
4 21.1M 32.8k 1026 44M
8 24M 329k 1028 44M
16 26.3M 33k 1031 45M
32 28.8M 33.2k 1038 44M
64 31.3M 33.7k 1052 44M
128 34M 34.6k 1080 44M
256 343 M 36.4k 1136 44M
512 40 M 39.9k 1248 45M
1024 39.2M 47.1k 1472 45M
2048 433 M 61.4k 1920 46 M
4096 25.3M 90.1k 2816 4.6 M
8192 14M 147k 4608 47M
262k 8192 15.7M
24 |1 21M 49.2k 1024 43M
4 314M 49.2k 1026 43M
8 35.8M 493k 1028 44M
16 39.6 M 49.5k 1031 43M
32 424M 49.8k 1038 44M
64 46 M 50.5k 1052 44M
128 50.1M 51.8k 1080 43M
256 53.3M 54.5k 1136 43M
512 58.6 M 59.9k 1248 44M
1024 57.1M 70.7k 1472 44M
2048 61.5M 92.2k 1920 45M
4096 36.9M 135k 2816 4.6 M
8192 20.8M 221k 4608 46 M
393k 8192 16.2M
32 |1 27.6 M 65.5k 1024 43M
4 41.2M 65.7k 1026 43M
8 47.2M 65.8k 1028 43M
16 51.9M 66k 1031 43M
32 554 M 66.4k 1038 43M
64 59.7M 67.3k 1052 44M
128 643 M 69.1k 1080 44M
256 66.5M 72.7k 1136 44M
512 64.6 M 79.9k 1248 44M
1024 66.4M 94.2k 1472 44M
2048 62.3M 123k 1920 45M
4096 48.1M 180k 2816 4.6 M
8196 27.3M 295k 4608 46 M
524k 8192 194M
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Chapter 6
Correctness

In this section, we prove Quancurrent’s correctness.

6.1 Preliminaries

Queries are answered from an array of ordered tuples summarizing the total stream processed
so far, denoted as samples. Each tuple contains a summary point (i.e., a value from the sketch)
and its associated weight. The samples array contains all the sketch’s summary points and
is sorted according to their values. Note that, only levels such that tritmap[i] € 1,2 are
included.

As described in Section 3.2, the update operation is divided into 3 stages: (1) gather and sort
is the process of ingesting stream elements into a Gather& Sort unit. (2) batch update is the
process of copying 2k elements from one of the G&SBuffers into Quancurrent’s first level. (3)
propagate levels is the process of merging the base level up the sketch’s levels until reaching

an empty level.

6.1.1 Definitions

Rinberg et al. [37] defined the relation between a sequential history and a stream:

Definition 6.1.1. Given a finite sequential history H, S(H) is the stream ag, ..., a, such

that ay, is the argument of the k" update in H.
The notion of happens before in a sequential history as defined in [37]:

Definition 6.1.2. Given a finite sequential history H and two method invocation M7, M5 in
H, if M precedes M3 in H, we denote M <pg M.

Definition 6.1.3 (Unprop updates). Given a finite execution o of Quancurrent, we denote by
suffix(c) as the suffix of o starting at the last successful batch update event, or the beginning
of o if no such event exists. We denote by up_suffiz(c) the sub-sequence of H (suffiz(o))
consisting of updates operations in the Gather&Sort units. We denote by up_suffiz;(o) the
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sub-sequence of H (suffiz(o)) consisting of updates operations in the local buffer of thread
T;.

Definition 6.1.4 (Updates Number). We denote the number of updates in history H as |H]|.

6.2 Algorithm Correctness Proof

Lemma 6.2.1. Quancurrent is strongly linearizable with respect to r-relaxed sequential Quan-
tiles sketch withr = 4kS + (N — S)b, where S is the number of NUMA nodes, k is the sketch

summary size, b is the size of threads local buffer and N is the number of update threads.

Proof. Quancurrent is an r-relaxed concurrent Quantiles sketch. The correctness condition
for randomized algorithms under concurrency is strong linearizability [21]. Strong lineariz-
ability is defined with respect to the sequential specification. The sequential specification is
defined with respect to deterministic objects. Therefore, we de-randomized Quancurrent by
providing coin flips with every update. We denote by SegSketch to be the sequential specifi-
cation (i.e., the set of all sequential histories) of Quancurrent.

A relaxed consistency extends the sequential specification of an object to a larger set that
contains sequential histories which are not legal but are at bounded “distance” from a legal
sequential history [25, 2, 37]. We re-define Quancurrent sequential specification by relaxing it.
Intuitively, we allow a query to “miss” a bounded number of updates that precede it. Quantiles
sketch is order agnostic, thus re-ordering updates is also allowed. We denote by SeqSketch”
the set of "relaxed” sequential histories.

Let o be a concurrent execution of Quancurrent. We use two mappings, from concurrent
executions to sequential histories, defined as follows. First, we define a mapping, [, from a
concurrent execution to a serialization, by ordering operations according to the following

linearization points:

+ Query linearization point is the second tritmap read, tm2, such that it summarizes the

same stream size as tm1 (Algorithm 3.6, Line 82).

« Update linearization point is the insertion of elements to threads’ local buffers (Algo-
rithm 3.2, Line 20).

Strong linearizability requires that the linearization of a prefix of a concurrent execution
is a prefix of the linearization of the whole execution. By definition, /(o) is prefix-preserving.
Note that (o) is a serialization that does not necessarily meet the sequential specification.

Relaxed consistency extends the sequential specification of an object to include also re-
laxed histories. We define a second mapping, f, from a concurrent execution to a serialization,

by ordering operations according to visibility points:
+ Query visibility point is the query’s linearization point.
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« Update visibility point is the time after the update’s invocation in ¢ in which the
G&SBuffer that includes this update, is batched updated into level 0 of the global sketch.
If there is no such time, the update does not have a visibility point, meaning, it is not

included in the relaxed history, f(o).

To prove correctness we need to show that for every execution o of Quancurrent: (1)
f(o) € SeqSketch, meaning, the serialization according to visibility points is a "legal” sequen-
tial history of Quancurrent. and (2) f(o) is an r-relaxation of [(o) for r = 4kS + (N — S)b.
That is, the sequential history f(o), comprised of all but at most 7 of the operations in [(o),
and each invocation in f (o) is preceded by all but at most r of the invocations that precede

the same invocation in /(o).
We show the first part.
Lemma 6.2.2. Given a finite execution o of Quancurrent, f (o) is in the sequential specification.

Proof. First, we present and prove some invariants.

Invariant 1. The Gather&Sort object summarises at most 4k elements.

Proof. The Gather&Sort unit contains two buffers of 2k elements. Elements are ingested into
threads’ local buffers and moved to the G&SBuffer without being sampled. The desired sum-
mary is agnostic to the processing order, therefore S summarises history of 4k update oper-

ations and their responses. |
Invariant 2. The variable tritmap is a monotonic increasing integer.

Proof. The variable tritmap is altered only in Line 40 of Algorithm 3.3, in Line 52 of Algo-
rithm 3.4 and in Line 57 of Algorithm 3.4. By definition, it is only incremented. |

Invariant 3. The variable tritmap represents the sketch state:

e Iftritmapli] = 0, then levels[i] is empty or is not contained in the sketch’s samples array

(needs to be ignored).
e Iftritmapli] = 1, then levels|i] contains k points associated with a weight of 2.

e Iftritmapli] = 2, then levels|i] contains 2k points associated with a weight of 2°.

Proof. The proof is by induction on the length of the levels array (or its current maximum
depth).

Base: By definition, tritmap is initialized with 0 and updated during the batchUpdate proce-
dure and the propagate procedure. After the first batch update, level 0 contains 2k elements
and tritmap is increased by 2 such that tritmap[0]=2. When this first batch is merged with the
next level, level 1 contains k& elements and tritmap is increased by 1 such that tritmap[0]=0.

On each propagation, we first perform a batch update of one of the G&SBuffer arrays to
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level 0 and increase the tritmap by 2. Then we call propagate() starting with level 0. Level
0 is merged with the next level and the tritmap is incremented by 1. Therefore, after each
batchUpdate, tritmap[0] = 2 and level 0 contains 2k elements and after each call to prop-
agate(0) tritmap[0] = 0 and level 0 is not contained in the sketch’s samples array. The
following calls to propagate increase tritmap by 3! for i > 0 and tritmap[0] = 0 until the
end of the current propagation.

Inductive hypothesis: We assume the invariant holds for all levels i such that ¢ > 0 and prove

it holds for level ¢ 4+ 1. By definition, tritmap is updated during batchUpdate and propagate
procedures. For i > 0, tritmap is changed only if tritmap|i] = 2. By the inductive hypoth-
esis, if tritmap[i] = 2, then levels]i] contains 2k points associated with a weight of 2¢. If
propagation has not yet reached level i+1, it is empty and tritmap[i+1] = 0 (by initialization).
After a call to propagate(i), levels[i + 1] contains k points associated with a weight of 2¢+1
and tritmap satisfies [b31, ..., bi12,0,2,b;1,...,bo] + 3" = [b31,...,bi12,1,0,b;_1,. .., bo]
i.etritmapli+1] = 1. After the next call to propagate(i), level i+1 will contain 2k points asso-
ciated with a weight of 2¢*1 and tritmap will satisfy [bs1, ..., biro, 1,2,b;1,...,bo] + 3¢ =
[b31, ...y bi12,2,0,b;_1,...,bp] ie tritmapli + 1] = 2. Note that each propagation starts
from level 0 and stops when reaching an empty level j, the tritmap trit larger than j are not

changed. [
Invariant 4. Given a finite execution o of Quancurrent, it summarises f (o).

Proof. The proof is by induction on the length of o.
Base: The base is immediate. Quancurrent summarises the empty history.

Inductive hypothesis: We assume the invariant holds for ¢/, and prove it holds for ¢ =

{o’, step}. We consider only steps that can alter the invariant, meaning steps that can change
the sketch state.

« DCAS operation during the batchUpdate procedure, increasing tritmap by 2 and copy-
ing one of the G&SBuffer arrays into the first level of Quancurrent.

By the inductive hypothesis, before the step, Quancurrent summarises f(o’). If the
DCAS fails, the sketch state has not changed. Else, 2k elements were copied to level 0
and the tritmap was increased by 2. From Invariant 1, a G&SBuffer array summarises a
collection of 2k elements {a1, . .., ag }. By copying, we sequentially ingest the stream
B = {ai,...,as;} to Quancurrent. Let A = S(f(0’)). By definition, Quancurrent

summarises A||B. Therefore Quancurrent summarises f(c), preserving the invariant.

« DCAS operations during the propagate procedure, updating tritmap and merging level

1 with its following level.

By the inductive hypothesis, before the step, Quancurrent summarises f(o’). If the
DCAS fails, the sketch state has not changed by the step. Else, we propagated level ¢

into level i + 1. By definition, k points from level ¢ were merged with level ¢ + 1, with
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the weight of each point scaled up by a factor 2. After the merge, tritmap[i]=0 therefore,
level i was disabled from samples|] and 2k points associated with a weight of 2¢ are not
included in the summary. The total weight of the sketch’s elements was not changed.
The sketch summarises the same stream, no new points were added and the stream size
was not changed. Thus, the sketch’s state presents (summarises) the same stream, that

is, Quancurrent summarises f (o), preserving the invariant.
« Operations to clear level i, updating levels[i| < L.

By definition, tritmap[i] = 0. By Invariant 3, levels|i] is empty or ignored and not in-
cluded in samples||. Thus, operations to clear levels do not affect the stream processed

by the sketch thus far. Quancurrent summarises f (o), preserving the invariant. |

Lemma 6.2.3 (Query Correctness). Given a finite execution of Quancurrent o, let () be a query
operation that returns in o. Let v be the visibility point of QQ, and let o’ be the prefix of o until
the point v. The query () returns a value equal to the value returned by a query operation of the

sequential Quantiles sketch after processing the stream S (f(0”)).

Proof. Let 0, @, v and ¢’ be as defined in the Lemma, and let A = S(f(0”)). By definition,
the visibility point of a query is when the second tritmap read returns a value representing
the same stream size as the previous tritmap read. As proved in Lemma 3.3.5, the collected
snapshot summarizes the same stream as Quancurrent at the visibility point. By Invariant 4, at
point v, Quancurrent summarises f(o’), and, similarly, summarises the stream A = S(f(0)).
Therefore, The query (Q returns a value equal to the value returned by a sequential Quantiles
sketch after processing the stream A = S(f(0")). [ |

We have shown that each query in f(o) estimates all updates that happened before its
invocation. Specifically, a query invocation at the end of a finite execution o returns a value
equal to the value returned by a sequential sketch after processing A = S(f(o)). By this, we
have proven that f(o) € SeqSketch. ]

Next, we prove the second part. We show that for every execution o, f(o) is an -
relaxation of [(¢) for r = 4kS + (N — S)b.

The order between operations satisfies:

Lemma 6.2.4. Given a finite execution o of Quancurrent, and given an operation O (query
or update) in (o), for every query Q in l(c) such that QQ happened before O in (o), then Q
happened before O in f(0):

Q<i) O = @ <5(0) O

Proof. If O is a query then the proof is immediate since the visibility point and the lineariza-
tion point of a query are equal. Else, O is an update. By definition, the linearization point of
an update happens before its visibility point. As the linearization point and visibility point of
a query () are equal, it follows that if ) <;(,) O then Q <) O. [ |
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Note that as the query linearisation point is equal to its visibility point, all queries in f (o)
will also be in [(0).

We give an upper bound on the number of updates in NUMA-local buffers.

Lemma 6.2.5. Given a finite execution o of Quancurrent, the maximum number of unpropa-

gated update operations in all Gather&Sort units is 4kS, where S is the number of NUMA nodes:
|up_suffix(o)| < 4kS.

Proof. If an update is included in up_suffiz(o), by definition, it is included in one of the
G&SBuffers. The size of each G&SBuffer is less than or equal to 2k. By definition, if both
arrays in a Gather&Sort unit are full, no update thread (pinned to the same node as the
Gather&Sort unit) can copy his local buffer’s elements. It follows that |up_suffiz(c)| <
4kS. [

Now, we give an upper bound on the number of updates in threads’ local buffers.

Lemma 6.2.6. Given a finite execution o of Quancurrent, the number of unpropagated updates

in the local buffer of a thread T; is bounded by b,
|up_suffiz;(c)| < b

Proof. If an update is included in up_suffiz;(c), by definition, it is included in T; local buffer.
As the size of threads’ local buffer is b, it follows that |up_suffiz;(c)| < b. Note that when
the local buffer of thread T7; is full, it copies itemspuf; to one of the G&SBuffers and the

corresponding updates will not be included in up_suf fiz;(o). |

To prove that f(o) is an (4kS + (N — S)b)-relaxation of [(o), first, we will show that
f (o) comprised of all but at most = 4kS + (N — S)b updates invocations in /(o) and their

responses.

Lemma 6.2.7. Given a finite execution o of Quancurrent,
[f(o)] = |l(o)] = (4kS + (N = S)b)

Proof. The linearization /(o) contains all updates that have been inserted into a thread’s local
buffer. f(o) contains all updates with visibility points, i.e., updates that have been propagated
into the first level of the global sketch. An update, made by thread 7;, without a visibility
point is in 7; local buffer or in one of the NUMA-local buffers of the G&Sort unit that 7; is
pinned to. By definition, updates without visibility points are the unpropagated updates in
G&SBulffers and the unpropagated updates in the local buffer of each update thread. Each
G&Sort unit has an owner thread that tries to batch update into the global sketch. As such,

for N update threads, S update threads’ local buffer is empty as each of them is an owner
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thread of a G&Sort unit. Therefore,

N-S
()] = l(o)] = (Z up_szﬁ%(d)) — |up_suffiz ()| (6.1)
i=1

From Lemma 6.2.6, |up_suffiz;(c)] < b and from Lemma 6.2.5, |up_suffiz(c)| < S - 4k.
Therefore,
()] > 1(0)] — (48 + (N — S)b) (62 ®

To complete the poof that f(o) is an (4kS + (N — S)b)-relaxation of [(o), we will show
that each invocation in f (o) is preceded by all but at most (4k.S+ (N — S)b) of the invocations

that precede the same invocation in /(o).

Lemma 6.2.8. Given a finite execution o of Quancurrent, f(o) is an (4kS + (N — S)b)-

relaxation of l(o).

Proof. Let O be an operation in f(c) such that O is also in [(¢). Let Ops be a collection of
operations preceded O in [(o) but not preceded O in f(0), i.e.,

Ops = {O,’O, =U(o) OnO 74f(0) O}. (6.3)

By Lemma 6.2.4, as the query linearization point is equal to its visibility point, a query is in
f(o) ifand only if it is in I(0). Thus @ ¢ Ops i.e., Ops includes only update operations. Let

0P be the prefix of o and let 0P°%! be the suffix of o such that
(o) = {oP™, 0, cP%}. (6.4)

From Lemma 6.2.7, | f (oP")| > |I(oP")| — (4kS + (N — S)b)). As | f(oP"¢)] is the number of
updates preceded O in f(oP"), and |I(cP"®)| is the number of updates preceded O in I(cP"¢),
it follows that

Ops| = |1(e™)] = [f(a"")| (6.5)

< @) = (IH(e™)| = (4kS + (N = S5)b)) (6.6)

< (4kS + (N — S)D). (6.7)

Therefore, by Definition 2.1.2, f(o) is an (4k 4+ b(IN — 1))-relaxation of (o). [ |

Finally, we have proven that given a finite execution o of Quancurrent, /(o) is strongly
linearizable, f(o) € SeqSketch and f(o) is an (4kS + (N — S)b)-relaxation of [(c). We

have proven Lemma 6.2.1.
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Chapter 7

Conclusion and Open Questions

We presented Quancurrent, a concurrent scalable Quantiles sketch. We have evaluated it
and shown it to be linearly scalable for both updates and queries while providing accurate
estimates, i.e., retaining a small error bound with reasonable query freshness. Moreover, it
achieves higher performance than state-of-the-art concurrent quantiles solutions with better
query freshness.

Quancurrent’s scalability arises from allowing multiple threads to engage concurrently in
merge-sorts, which are a sequential bottleneck in previous solutions. We dramatically reduce
the synchronization overhead by accommodating occasional data races that cause samples to
be duplicated or dropped, a phenomenon we refer to as holes. This approach leverages the
observation that sketches are approximate to begin with, and so the impact of such holes is
marginal.

Future work may leverage this observation to achieve high scalability in other sketches
or approximation algorithms.

Another direction for future work is using a Quantiles sketch to implement a search index.
Index structures are used when fast data access is needed. Such data structures are critical
in practical settings, where large amounts of underlying data are paired with high search
volumes and with a high level of concurrency on the hardware side via tens or even hundreds
of parallel threads.

Indexes have been more memory, cache, and/or CPU efficient in the past decades. It is
common for the index structure always to be stored in the main memory, with the data itself
sitting on disk. The B-Tree is a commonly used index structure, which returns the location of
a value within a key sorted set.

Kraska et al. [30] suggested that traditional index structures can be enhanced, or even
replaced, with learned models, including deep-learning models, termed learned indexes. Con-
tinuous function, describing the data distribution, can be used to build more efficient data
structures or algorithms. As noted by Kraska et al. [30], indexes are models. For example, a
B-Tree can be considered as a model which takes a key as an input and returns the position of
a record within a sorted array. Instead of a B-Tree, they suggested a recursive model index.

That is, build a hierarchy of models, where at each stage the model takes the key as an input
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and based on it picks another model, until the final stage predicts the position.

Quantile sketches can summarize large amounts of data in sub-linear space complexity.
Therefore, We can use Quantiles sketches to reduce the memory overhead of an index. Also,
Quantiles sketch can be used to approximate the data distribution and optimize different types

of index structures.
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Appendix A

Holes Analysis Proofs

To show the bound on the expected number of holes, we present some claims.

In Section 4.1 we show in Equation 4.2 that

o <1>jb+2i+1 (]b+2’b>
"=\ 2 i)

Consider the following functions:

Jb+2i4+1 [ ;
fG) 2 (;) <Jinr2 )
a1 (b 20+ 2)(jb+ 20+ 1)
R =g Gb+it+tG+1)
a1 (jb+2b)(jb+2b— 1)
f3(]) ~1 : (jb+ b)b .

Claim A.1. f5(i) is monotonically decreasing for0 <i < b — 1 and for j,b > 2 € IN.

Proof.

1 (b 2i+4)(jb +2i +3)
4 (jb+i+2)(i+2)

fa(i+1)

We show that fo(;(j:)l) <lfor0<:<b-2.

i) (b+2itz) (h+2i+l) (britz) (i+2) ="

fo(i4+1)  (jb+2i+4) (jb+2i+3) (jb+i+1) (i+1)
f2

Claim A.2. f3(j) is monotonically increasing for j,b > 2 € IN.

Proof.

1 (jb+3b)(jb+3b—1)
fli+D =7 (jb + 2b)b '
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Weshowthat%&l) >1forj,b>2€NN

f3s(G+1)  (jb+3b) (jb+3b—1) (jb+0b)

f3(j) (Jb+2b) (jb+2b—1) (jb+2b)
>1 >1

N Ub+b)>>@b+2w

~ (jb+2b) — (jb+2b)

> 1

Claim A.3. fi(i) is monotonically increasing fori € {0,1,...,b— 1} and for j,b € IN.

Proof. For b = 1,7 € 0 and the claim is immediate.
For b= 2,7 € 0,1 thus,

fl(o) _ <;)2j+1
-0 (1)
_ (;)2341' (;)2.(2j+2)
=70 212> h0) 22 = f0)

For b > 2, we show that fi(i +1) > f1(i) forall0 <i < b—1andfor j,b € N

fl(z) _ 7b+2i41 <]b+ 2Z>

3)
2 7
1\ 70243 [ 5h 1+ 27 + 2
)= (=
2

Gb+i+1)-(i+1)!
1 (jb+2i42)(jb+2i+1)

A A i oo sy rp

Claim A.1 shows that fo(i) = % . (Jbzﬁ:i)gl(’jfﬁr L i monotonically decreasing for 0 <

i < b — 1. Denote by f3(j) to be fa(b—1),

1 (jb+ 20)(jb+2b — 1) A

f30) = 3 Gb+b)b

Claim A.2 shows that f3(7) is monotonically increasing.

1 (B8h)@BEb-1)  9-3 9b—b>1
4 252 T 8 ~~ 8 ~—
b>3

f3(1)
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Therefore, f3(j) > 1 for all j > 1. With this, we have shown that

. 1 (jb+2i+2)(jb+2i+1) .
1) = Lz >
Claim A.4. g;(b) £ ?’I’Tfl bounded by 3.
Proof.
3b—-1 3b
b) = — < —
91(b) ;<3 <3
Claim A.5. go(b) = 3211 bounded by 1.5.
Proof.
3b+1 (20+1)+0b b
92(0) = o T = a1 TS I T

2
Claim A.6. g3(b) £ (1;4[)-721)2 is monotonically decreasing and forb = 12, g3(b) = (%)

Proof. The proof is immediate.

b—1 .
Claim A.7. (%) : (Jbﬁbl”) < (Jb+2b 2) forallbe Wandj > 1,j € IN.

>b1' (jb+3b—2> _
b-1 b‘b 13b—
) (Jb+ 2)!
)
)

Proof.

C(b—1DGb+20—1)!
b-1 (jb+2b—2+Db)!
b—1)Gb+b—1+0b)
b-1 (jb+20—-2)!  (jb+26—2+1)---(jb+2b—-2+b)
b-DIGb+b—1)! (jb+b—1+1)---(jb+b—1+b)

1>b1. jb+2b—2 H]b+2b—2+t:
2 b—1 jb+b—1+t

jb+2b—2 H]b+2b 2+t
jb+b—1+t)

(jb+2b—2) 12[ jb+2b—2+t _ (ib+2b-2
(

L (jb+20—2+t)+ b+t b—1

<1

forall b, j € IN such that j > 1.
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