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Abstract

Processing high-speed, high-volume data often requires performing analytics on a rep-
resentation of the data, rather than the data itself. To this end, data sketching al-
gorithms have become indispensable tools for high-speed computations over massive
datasets. They maintain the streams’ state and answer queries on it (e.g., how many
unique elements are in the stream) using limited memory, at the cost of giving ap-
proximations rather than exact answers. In this thesis, we study three aspects of these
systems: (1) efficient concurrent implementation, (2) correctness semantics, and (3)
efficient network implementation.

Existing libraries provide highly optimized sketches, but do not allow parallelism for
creating sketches using multiple threads, or querying them while they are being built.
Utilizing relaxed semantics and the notion of strong linearizability, we present a generic
approach to parallelizing data sketches efficiently and allowing them to be queried in
real-time. We prove its correctness and analyze its error in some specific sketches.
We instantiate our algorithm with the KMV sketch, achieving terrific scalability with
small error, which we then contribute to open source. However, when plugging in other
sketches we identify two performance bottlenecks.

The first stems from the chosen correctness criterion. The de facto correctness cri-
terion for concurrent objects is linearizability. Intuitively, under linearizability, a read
overlapping an update must return the object’s value either before or after the update.
We observe, however, that in some cases, any intermediate value between the invocation
and response would also be acceptable. To capture this degree of freedom, we propose
Intermediate Value Linearizability (IVL), a new correctness criterion that allows re-
turning these intermediate values. Roughly speaking, IVL allows reads to return any
value that is bounded between two return values that are legal under linearizability.
We show that using IVL instead of linearizability allows for circumventing the first of
our bottlenecks, and that IVL implementations of sketches inherit the error of their
sequential counterparts.

The second bottleneck is due to the sequential propagation from thread-local sketches
into the shared sketch. Such propagation is light in some sketches, e.g., KMV, but may
be costly in others, e.g., Quantiles. The Quantiles sketch maintains a series of buffers,
with propagations taking a variable amount of time depending on the size of the stream.
To this end, we propose Quancurrent, a concurrent Quantiles sketch. We show how we
design Quancurrent to provide a more scalable solution.

1



Lastly, we study sketches in the distributed setting. We propose the Strong Delayed
Writes (SDW) algorithm, enabling distributed sketch implementation while guaran-
teeing relaxed strongly linearizabile snapshots, by propagating updates network wide.
Another approach is constructing sketches separately, and periodically reporting the
measurements to a centralized server. Traditionally, nodes symmetrically compress
their summaries. We show that communication can be reduced by considering the
amount of traffic observed by each node and compressing accordingly. We illustrate
this approach for three common sketches and perform extensive simulations to show
that our sketches send smaller summaries than traditional ones while retaining similar
error bounds.
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Notation and Abbreviations

CM CountMin (Sketch)
DDoS Distributed Denial of Service
HLL Hyper-Log-Log (Sketch)
IVL Intermediate Value Linearizability
KMV K-Minimum-Values (Sketch)
PAC Probably-Approximately-Correct
SWMR Single-Writer-Multi-Reader (Register)
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Chapter 1

Introduction

Being able to process, in real-time, continuous high-volume streams of data is a com-
mon requirement in multiple analytical platforms. Examples of such applications are
exploratory data analysis [116], operation monitoring [1], data aggregation [4, 19], graph
mining [26] and more.

Unlike conventional database query processing, which requires several passes over
static archived data, data-stream processing algorithms often rely on building concise
approximate (yet, accurate) sketches [27] of the input stream in real-time. A sketch data
structure is essentially a succinct (sublinear) summary of a stream that approximates
a specific query, for instance, unique element count [19], quantile values [4], or frequent
items [31].

Sketches typically provide a tradeoff between accuracy and space, and generally
come with a closed-form accuracy analysis in a sequential setting. Such sketches are
called probably approximately correct (PAC), providing an approximation within some
error ϵn with a failure probability bounded by some parameter δ, for sketch parameters
(ϵ, δ). Practical sketch implementations have recently emerged in toolkits [11] and data
analytics platforms (e.g., PowerDrill [61], Druid [39], Hillview [62], and Presto [67]).

1.1 Background: Sequential Sketches

A sketch S summarizes a collection of elements { a1, a2, . . . , an }, processed in some
order given as a stream A = a1, a2, . . . , an. The desired summary is agnostic to the
processing order, but the underlying data structures may differ due to the order. An
important property of the sketches we consider in this thesis is mergeability : Two
sketches with parameters (ϵ, δ) can be merged into a single sketch with the same pa-
rameters. We capitalize on this property, which enables computing a sketch over the
whole stream by merging sketches over substreams, which has also been exploited in
previous work [111, 99, 32].

The sketch’s API is:

S.init() initializes S to summarize the empty stream;

9



S.update(a) processes stream element a;

S.query(arg) returns the function estimated by the sketch over the stream processed
thus far, e.g., the number of unique elements; the optional argument arg may, for
example, be the requested quantile.

S.merge(S′) merges sketches S and S′ into S; i.e., if S initially summarized stream
A and S′ summarized A′, then after this call, S summarizes the concatenation of
the two, A||A′.

1.1.1 Θ Sketch

Computing the exact number of distinct elements, also called stream cardinality can
be done with storage complexity essentially proportional to the stream size. Sketches
estimating the stream cardinality have been widely studied [19, 49, 61, 50, 40], and
provide estimates while using sublinear memory. All known efficient cardinality esti-
mators rely on randomization, which is ensured by the use of hash functions, which
hashes stream elements to the interval [0, 1]. Using this hash we can decrease memory
usage. For example, we can maintain only elements whose hashes are less than 1/4,
and our estimate would be 4 times the count. However, the threshold still implies
linear memory usage. Instead, the threshold should decrease as the number of unique
elements increases. This is the idea behind the Θ sketch.

The Θ sketch is based on the k Minimum Values (KMV) algorithm [19] given in
Algorithm 1. It maintains a sampleSet and a parameter Θ that determines which
elements are added to the sample set. It uses a random hash function h whose outputs
are uniformly distributed in the range [0, 1], and Θ is always in the same range. An
incoming stream element is first hashed, and then the hash is compared to Θ. In case
it is smaller, the value is added to sampleSet. Otherwise, it is ignored.

Because the hash outputs are uniformly distributed, the expected proportion of
values smaller than Θ is Θ. Therefore, we can estimate the number of unique elements
in the stream by dividing the number of (unique) stored samples by Θ (assuming that
the random hash function is drawn independently of the stream values).

KMV Θ sketches keep constant-size sample sets: they take a parameter k and keep
the k smallest hashes seen so far. Θ is 1 during the first k updates, and subsequently
it is the hash of the largest sample in the set. Once the sample set is full, every
update that inserts a new element also removes the largest one and updates Θ. This
is implemented efficiently using a min-heap [15]. The merge method adds a batch of
samples to sampleSet.

1.1.2 CountMin Sketch

Estimating flow sizes is a required capability in many networking applications [43, 18,
90], in fields as diverse as accounting, monitoring, load balancing and filtering, and even

10



Algorithm 1 Θ sketch.
1: variables
2: sampleSet, init k 1’s ▷ samples
3: Θ, init 1 ▷ threshold
4: atomic est, init 0 ▷ estimate
5: h, init random uniform hash function
6: procedure query(arg)
7: return est
8: procedure update(arg)
9: if h(arg) ≥ Θ then return

10: add h(arg) to sampleSet
11: keep k smallest samples in sampleSet
12: Θ← max(sampleSet)
13: est ← (|sampleSet| − 1) / Θ
14: procedure merge(S)
15: sampleSet ← merge sampleSet and S.sampleSet
16: keep k smallest values in sampleSet
17: Θ← max(sampleSet)
18: est ← (|sampleSet| − 1) / Θ

beyond networking. Counting the exact size of every flow is often challenging due to a
typically large number of active flows at a specific time, making it difficult to maintain
a counter-per-flow within a memory accessible at the line rate. There can be two types
of errors in the estimation of a flow size: Overestimations and underestimations. The
state-of-the-art data structure for flow size estimation is the Count-Min (CM) sketch
suggested by Cormode and Muthukrishnan in 2005 [31], which overestimates the flow
sizes.

The CM sketch is instantiated with parameters ϵ and δ, where the flow size estima-
tion is within error ϵ with probability at least 1−δ. It is comprised of a two dimensional
array of counters of size d × w, where d = ⌈ln 1/δ⌉ and w = ⌈e/ϵ⌉, and all counters
are initialized to 0. Note that the number of columns is determined by the error (and,
conversely, the error is determined by the number of columns), and the probability is
determined by the number of rows. A set of d hash functions is used to map a flow
to d counters, one in each of its rows. Upon arrival of an element in the flow, each of
these counters is incremented.

To estimate the size of a flow, its d selected counters are considered and the size is
estimated as the minimum among these counters. Since multiple flows can contribute
to the same counter, the computed value is potentially larger than the exact one. In
case other flows contributed to all d counters then an overestimation occures.

The CM sketch is illustrated in Figure 1.1. Flows I, II of sizes 4, and 5, respectively,
are recorded in the sketch (shown on the left side). Each flow increases the value of
d = 3 counters by its size. The size of Flow III (right side) is estimated by querying
the CM as the minimal among the d counters it is mapped to.

While, as mentioned, the CM can observe overestimations [31], the accuracy guar-
antees can be described as follows: When using CM with width w and depth d the
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Figure 1.1: The Count-Min sketch (CM) [31], allowing flow size estimation. Each flow
is mapped to a single counter in each row. Flow I is mapped to counter 5 in row 1,
counter 2 in row 2, and counter 4 in row 3. The mappings are presented in the figure.
A flow size is estimated as the minimum among the counters it is mapped to by a set
of hash functions.

estimation f̂ of flow f satisfies with probability 1− δ

f̂ ≤ f + ϵN.

Here, N is the number of packets in the measured stream, w =
⌈

e
ϵ

⌉
(for Euler’s number

e) and d =
⌈
ln 1

δ

⌉
.

1.1.3 Quantiles Sketch

Understanding the data distribution is a fundamental task in data management and
analysis, used in applications such as exploratory data analysis [116], operations moni-
toring [1], and more. The Quantiles sketch family captures this task [85, 4, 51, 30]. The
sketch represents the quantiles distribution in a stream of elements, such that for any
0 ≤ ϕ ≤ 1, a query for quantile ϕ returns an estimate of the ⌊nϕ⌋th largest element in a
stream of size n. For example, quantile ϕ = 0.5 is the median. Due to the importance
of quantiles approximation, Quantiles sketches are a part of many analytics platforms,
e.g., Druid [38], Hillview [23], Presto [95], and Spark [110].

The Quantiles sketch proposed by Agarwal et al. [4] consists of a hierarchy of arrays,
where each array summarizes a subset of the overall stream. The sketch is instantiated
with a parameter k, which is a function of (ϵ, δ). The first array, denoted level 0,
consists of at most 2k elements, and every subsequent array, in levels 1, 2, . . . , consists
of either 0 or k elements at any given time.

Stream elements are added to the sketch in order of arrival, first entering level 0,
until it consists of 2k elements. Once this level is full, the sketch samples the array
by sorting it and then selecting either the odd indices or the even ones with equal
probability. The k sampled elements are then propagated to the next level, and the
rest are discarded. If the next level is full, i.e., consists of k elements, then the sketch
samples the union of both arrays by performing a merge sort, and once again retaining
either the odd or even indices with equal probability. This propagation is repeated
until an empty level is reached. Every level that is sampled during the propagation is
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emptied.
Each element is associated with a weight, such that an element in an array on level i

has a weight of 2i, reflecting the fact that it has “survived” i coin flips. Thus, an element
with a weight of 2i represents 2i elements in the processed stream. For approximating
the ϕ quantile, we construct a list of tuples, denoted samples, containing all elements in
the sketch and their associated weights. The list is then sorted by the elements’ values.
Denote by W (xi) the sum of weights up to element xi in the sorted list. The estimation
of the ϕ quantile is an element xj , such that W (xj) ≤ ⌊ϕn⌋ and W (xj+1) > ⌊ϕn⌋.

1.1.4 Accuracy

Today, sketches are used sequentially, so that the entire stream is processed and then
S.query(arg) returns an estimate of the desired function on the entire stream. Accuracy
is defined in one of two ways. One approach analyses the Relative Standard Error (RSE)
of the estimate, which is the standard error normalized by the quantity being estimated.
For example, a KMV Θ sketch with k samples has an RSE of less than 1/

√
k − 2 [19].

A PAC sketch provides a result that estimates the correct result within some error
bound ϵ with a failure probability bounded by some parameter δ. For example, a Quan-
tiles sketch approximates the ϕth quantile of a stream with n elements by returning an
element whose rank is in [(ϕ− ϵ)n, (ϕ + ϵ)n] with probability at least 1− δ [4].

1.2 Concurrent Sketches - Our Results

Figure 1.2: Using sketches in epochs.

Practical sketch implementations are provided within toolkits [11]. However, as of
the time when this work had begun implementations were not thread-safe [13], allowing
neither parallel data ingestion nor concurrent queries and updates; concurrent use was
prone to exceptions and gross estimation errors. Applications using these libraries
were therefore required to explicitly protect all sketch API calls by locks [108, 13]. As
a consequence of this limitation, typical deployments create sketches in epochs, where
queries are referred to the sketch created in the previous epoch while new stream
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elements are directed to a new sketch, as illustrated in Figure 1.2. This practice leads
to stale query results and thus loses the real-time quality of the system.

In Chapter 2 we explore a framework that takes advantage of the mergeability
property [27], which enables computing a sketch over a stream by merging sketches
over sub-streams. We provide a framework that is able to simultaneously provide
queries and updates to the same sketch from multiple threads. In contract to previous
methods (e.g., [61, 32]), which explore distributed sketching, our method is based on
shared memory and constantly propagates results to a queryable sketch.

We then instantiate the framework with the Θ sketch described in Section 1.1.1 and
analyze its performance. We find that we achieve a speedup of 10x with 12 threads,
as, after some elements are processed, most elements are hashed and discarded at the
thread level, and very few are propagated to the shared sketch. We also contributed
our solution to open-source. We then plugged in two other sketches and identify two
performance bottlenecks, which we address next.

The first performance issue is that our query requires an atomic snapshot. For some
sketches (e.g., KMV [19]) we show that such a snapshot is simple to implement and does
not effect performance. For other sketches (e.g., CountMin [31]) such a snapshot may
be costly to implement. Secondly, we still require merging from multiple threads. Some
sketches (e.g., CountMin [31]) have a quick merge operation. Others (e.g., Quantiles [4])
require a lengthy merge operation which results in limited scalability due to the merge
being a sequential bottleneck.

To address the first issue, we first revisit some important questions when parallelzing
sketches, for instance: What are the semantics of overlapping operations in a concurrent
sketch?, How can we prove error guarantees for such a sketch?, and, in particular, Can
we reuse the myriad of clever analyses of existing sketches’ error bounds in parallel
settings without opening the black box?

The framework presented in Chapter 2 uses strong linearizablity [53] as its correct-
ness semantics. But satisfying such semantics require querying the sketch via an atomic
snapshot. Roughly speaking, linearizability requires each parallel execution to have a
linearization, which “looks like” some sequential execution. But sometimes lineariz-
ability is too restrictive leading to a high implementation cost, as has motivated other
works on relaxing linearizability [3, 59, 6, 8], and is also shown herein.

In Chapter 3 we propose Intermediate Value Linearizability (IVL), a new correctness
criterion for concurrency objects that return a quantitative value. Intuitively, the return
value of an operation of an IVL object is bounded between two legal values that can
be returned in linearizations. For example, consider incrementing a counter from 7 to
10. Under linearizability, a read that occurs concurrently with the update may return
either a 7 or a 10, while under IVL, the read may return any number between 7 and
10. The motivation for allowing this is that if the system designer is happy with either
of the legal values, then the intermediate value should also be fine.

We show that concurrent IVL implementations of sequential sketches inherit the
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error bounds from their sequential counterparts. The importance of this is that it pro-
vides a generic way to leverage the vast literature on sequential sketches [89, 48, 25,
82, 31, 4] in concurrent implementations. We then present a concurrent IVL imple-
mentation of the CountMin sketch, and, by the semantics, deduce that the concurrent
sketch adheres to the error guarantees of the original sequential one, without having to
“open” the analysis. As IVL is less restrictive than linearizability, an IVL snapshot can
be used instead of the atomic one to circumvent the performance degradation induced
by the atomic snapshot.

The second performance bottleneck is the merge operation. Addressing this requires
a concurrent execution of the merge operation. To this end, we propose Quancurrent, a
highly scalable concurrent Quantiles sketch. Like the framework presented in Chapter 2,
Quancurrent relies on local buffering of stream elements, which are then propagated
in bulk to a shared sketch. But Quancurrent improves on the framework by elimi-
nating the latter’s sequential propagation bottleneck, which, in the Quantiles sketch,
mostly stems from the need to sort large buffers. In a nutshell, Quancurrent leverages
unsynchronized concurrent propagation, which introduces a small sampling error, but
increases speedup. Furthermore, instead of working only with thread-local and global
buffers, Quancurrent uses also intermediate NUMA-local buffers that are propagated
concurrently to a shared state, which increses the speedup by reducing the sequential
bottleneck. The multi-level concurrent propagation allows Quancurrent to work with
much smaller buffers, thus increasing the query freshness by reducing the number of
updates which can be “missed” by a query. Quancurrent is presently in Chapter 4.

1.3 Distributed Sketches - Our Results

Large-scale stream processing applications are inherently distributed, with several re-
mote sites observing their local stream(s) and exchanging information through a com-
munication network. Analyzing a single site does not always give the fullest picture.
For example, an attacker may be executing a distribute denial of service (DDoS) attack
on the network as a whole, but maintaining a low profile on each site individually. Only
the aggregation of the data shows the attack. To this end, we model the input to the
network as a single stream, with disjoint parts of the stream sampled by multiple inges-
tion nodes. The ingestion nodes periodically propagate their local sketches to a central
node, as illustrated in Figure 1.3. The network has to handle the trade-off of sending
data packets vs. sending crucial control packets with sketch information [124, 20]. A
way to reduce these control packets is by compressing the sketches before transferring
them to a central analytics node.

In Chapter 5, we develop a compression method named CM-SKTC for a single
CountMin sketch, which allows general compression ratios, and then present the Traffic-
Aware CM sketch, denoted TA-CM. We also present Traffic-Aware K-minimum-values
(KMV), denoted TA-KMV – a traffic-aware compression ratio for nodes implementing
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ingestion nodes.

distributed distinct flow count with the KMV sketch. Finally, we present Traffic-Aware
HyperLogLog (HLL), denoted TA-HLL – a traffic-aware compression ratio for nodes
implementing distributed distinct flow count with the HLL sketch. We then implement
our solutions and evaluate them on both the CAIDA [114] and MAWI [100] datasets,
and show similar average relative error with up to 10% fewer control packets in the case
of the CM sketch, but in the case of TA-KMV and TA-HLL we show similar average
relative error with a reduction of 50% in conrol packets.

Finally, in Chapter 6, we present an algorithm for constructing a distributed shared
sketch, which supports local reads and writes, ensuring relaxed strong linearizability,
similarly to the concurrent sketches presented in Section 1.2. The algorithm batches
updates into windows, and synchronizes window advancement. To distribute the sketch,
each node maintains three objects holding copies of the sketch, Ru, Rr, and Rs. At any
given time Ru is updated, Rr is queried, and Rs is synchronized across the network.
The sketches’ roles are alternated in a round-robin manner on window advancement.
In [121] we show that such an object can be efficiently implemented on programmable
switches only using the data-plane.

1.4 Conclusions

Data sketches are an indispensable tool in big data analysis, as they produce results
orders-of magnitude faster than exact solutions, and with mathematically proven er-
ror bounds. Designing a system around sketches allows simplification of the system’s
architecture and a reduction in overall compute resources required for the difficult com-
putational tasks of analysis. As such, they are included in multiple practical toolkits.
Yet virtually all prior work does not consider distribution or concurrency, but in the age
of the multi-core and cloud computing this is a requirement. In this thesis we consider
parallelism and data distribution as first class citizens in sketch design. Whereas naive
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parallelization may introduce a large error, we develop various examples of sketch de-
signs that leverage parallelization for performance or deal with distributed data without
introduction excessive error.
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Chapter 2

Fast Concurrent Data Sketches

Data sketches are approximate succinct summaries of long data streams. They are
widely used for processing massive amounts of data and answering statistical queries
about it. Existing libraries producing sketches are very fast, but do not allow parallelism
for creating sketches using multiple threads or querying them while they are being
built. In this chapter, we present a generic approach to parallelizing data sketches
efficiently and allowing them to be queried in real time, while bounding the error
that such parallelism introduces. Utilizing relaxed semantics and the notion of strong
linearizability we prove our algorithm’s correctness and analyze the error it induces in
some specific sketches. Our implementation achieves high scalability while keeping the
error small. We have contributed one of our concurrent sketches to the open-source
data sketches library.

2.1 Introduction

Figure 2.1: Stream processing pipeline with data sketch.

As previously mentioned, practical sketch implementations have recently emerged in
toolkits [11] and data analytics platforms (e.g., PowerDrill [61], Druid [39], Hillview [62],
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and Presto [67]). However, these implementations are not thread-safe, allowing neither
parallel data ingestion nor concurrent queries and updates; concurrent use is prone to
exceptions and gross estimation errors. Applications using these libraries are therefore
required to explicitly protect all sketch API calls by locks [108, 13]. As a consequence
of this limitation, typical deployments create sketches in epochs, where queries are
referred to the sketch created in the previous epoch while new stream elements are
directed to a new sketch, as illustrated in Figure 1.2 in the previous chapter. This
practice leads to stale query results and thus loses the real-time quality of the system.
Instead, we aim to query fresh data, as illustrated in Figure 2.1.

Our approach. We present a generic approach to parallelizing data sketches effi-
ciently while bounding the error that such a parallel implementation might induce.
Our goal is to enable simultaneous queries and updates to the same sketch from multi-
ple threads. Our solution is carefully designed to do so without slowing down operations
as a result of synchronization. This is particularly challenging because sketch libraries
are extremely fast, often processing tens of millions of updates per second.

We capitalize on the well-known sketch mergeability property [27], which enables
computing a sketch over a stream by merging sketches over sub-streams. Previous
works have exploited this property for distributed stream processing (e.g., [61, 32]),
devising solutions with a sequential bottleneck at the merge phase and where queries
cannot be served before all updates complete. In contrast, our method is based on
shared memory and constantly propagates results to a queryable sketch. Our solution
architecture is illustrated in Figure 2.2. Multiple worker thread buffer updates in local
sketches and periodically merge them into a global sketch; queries access the latter.

Figure 2.2: Concurrent sketches architecture.

We adaptively parallelize stream processing: for small streams, we forgo parallel
ingestion as it might introduce significant errors; but as the stream becomes large,
we process it in parallel using small thread-local sketches with continuous background
propagation of local results to the common (queryable) sketch.

We instantiate our generic algorithm with a KMV Θ sketch [19], which estimates
the number of unique elements in a stream; a popular sketch from the open-source
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Apache DataSketches library [11]. We have contributed our implementation back to
the Apache DataSketches library [34]. Yet we emphasize that our design is generic and
applicable to additional sketches. We briefly discuss the applicability of our algorithm
to additional popular sketches, such as Quantiles, CountMin, and HyperLogLog, where
we discuss the generic algorithm (Section 2.4).

Figure 2.3 compares the ingestion throughput of our concurrent Θ sketch to that
of a lock-protected sequential sketch, on multi-core hardware. As expected, the trivial
solution does not scale whereas our algorithm scales linearly.

Figure 2.3: Scalability of DataSketches’ Θ sketch protected by a lock vs. our concurrent
implementation.

Error analysis. Concurrency might induce an error, and one of the main challenges
we address is analyzing this error. To begin with, our concurrent sketch is a concurrent
data structure, and we need to specify its semantics. We do so using a flavor of relaxed
consistency similar to [59, 6, 112] that allows operations to “overtake” some other
operations. Thus, a query may return a result that reflects all but a bounded number
of the updates that precede it. While relaxed semantics were previously used for data
structures such as stacks [59] and priority queues [7, 98], we believe that they are a
natural fit for data sketches. This is because sketches are typically used to summarize
streams that arise from multiple real-world sources and are collected over a network with
variable delays, and so even if the sketch ensures strict semantics, queries might miss
some real-world events that occur before them. Additionally, sketches are inherently
approximate. Relaxing their semantics therefore “makes sense”, as long as it does not
excessively increase the expected error. If a stream is much longer than the relaxation
bound, then indeed the error induced by the relaxation is negligible. For instance, in
a stream consisting of ten million events, missing a hundred (or even a thousand) of
them will not make a big impact.

Analytics platforms often use multiple sketches in order to capture different dimen-
sions of the data. For instance, they may count the number of unique users from each
region in a different sketch. Typically, a handful of popular sketches account for most
events, and others are updated less frequently. Whereas the relaxation does not sig-
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nificantly affect the estimation in the popular sketches, since the error allowed by the
relaxation is additive, in less popular sub-streams, it may have a large impact. This
motivates our adaptive solution, which forgoes relaxing small streams altogether.

We show that under parallel ingestion, our algorithm satisfies relaxed consistency
with a relaxation of up to 2Nb, where N is the number of worker threads and b is the
buffer size of each worker. In our example use case, N is 12 and b ranges between 1
and 5.

The proof involves some technical challenges. First, relaxed consistency is defined
with regards to a deterministic specification, whereas sketches are randomized. We
therefore first de-randomize the sketch’s behavior by delegating the random coin flips
to an oracle. We can then relax the resulting sequential specification. Next, because
our concurrent sketch is used within randomized algorithms, it is not enough to prove
its linearizability. Rather, we prove that our generic concurrent algorithm instantiated
with sequential sketch S satisfies strong linearizability [53] with regards to a relaxed
sequential specification of the de-randomized S. We note, however, that supporting
strong linearizability did not incur additional costs nor did it impact the relaxation; we
were able to prove that our original design was strongly linearizable.

We then analyze the error for two types of relaxed sketches under random coin
flips, with an adversarial scheduler that may delay operations in a way that maximizes
the error. First, we consider the Θ sketch. For this sketch, its relative standard error
has been analyzed, and we show that our concurrent implementation’s error is coarsely
bounded by twice that of the corresponding sequential sketch. Second, we consider
a family of probably approximately correct (PAC) sketches – these are sketches that
estimate some quantity with an error of at most ϵ with a probability of at least 1− δ.
For an arbitrary PAC sketch estimating quantiles or counting unique elements, we show
that the error induced by its relaxation approaches that of the original, non-relaxed
sketch as the stream size tends to infinity.

Main contribution. In summary, this paper tackles the problem of concurrent
sketches, offers a general efficient solution for it, and rigorously analyses this solution.
While the paper makes use of many known techniques, it combines them in a novel
way. The main technical challenges we address are (1) devising a high-performance
generic algorithm that supports real-time queries concurrently with updates without
inducing an excessive error; (2) proving the relaxed consistency of the algorithm; and
(3) bounding the error induced by the relaxation in both short and long streams.

Section 2.2 lays out the model for our work. In Section 2.3 we formulate a flavor
of relaxed semantics appropriate for data sketches. Section 2.4 presents our generic
algorithm, and Section 2.5 proves strong linearizability of our generic algorithm. Sec-
tion 2.6 analyses error bounds for example sketches. Section 2.7 empirically studies
the Θ sketch’s performance and error with different stream sizes. Finally, Section 2.8
concludes.
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2.2 Model

We consider a non-sequentially consistent shared memory model that enforces program
order on all variables and allows explicit definition of atomic variables as in Java [71]
and C++ [21]. Practically speaking, reads and writes of atomic variables are guarded
by memory fences, which guarantee that all writes executed before a write w to an
atomic variable are visible to all reads that follow (on any thread) a read r of the same
atomic variable s.t. r occurs after w.

A thread takes steps according to a deterministic algorithm defined as a state ma-
chine, where a step can access a shared memory variable, do local computations, and
possibly return some value. An execution of an algorithm is an alternating sequence
of steps and states, where each step follows some thread’s state machine. Algorithms
implement objects supporting operations, such as query and update. An operation’s
execution consists of a series of steps, beginning with a special invoke step and ending
in a response step that may return a value. The history of an execution σ, denoted
H(σ), is its subsequence of operation invoke and response steps. In a sequential history,
each invocation is immediately followed by its response. The sequential specification
(SeqSpec) of an object is its set of allowed sequential histories.

A linearization of a concurrent execution σ is a history H ∈SeqSpec such that
(1) after adding responses to some pending invocations in σ and removing others, H

and σ consist of the same invocations and responses (including parameters) and (2)
H preserves the order between non-overlapping operations in σ. Golab et al. [53]
have shown that in order to ensure correct behavior of randomized algorithms under
concurrency, one has to prove strong linearizability:

Definition 2.2.1 (Strong linearizability). A function f mapping executions to histories
is prefix preserving if for every two executions σ, σ′ s.t. σ is a prefix of σ′, f(σ) is a
prefix of f(σ′).

An algorithm A is a strongly linearizable implementation of an object o if there is
a prefix preserving function f that maps every execution σ of A to a linearization H

of σ.

For example, executions of atomic variables are strongly linearizable.

2.3 Relaxed consistency for concurrent sketches

Previous work by Alistarh et al. [6] has presented a formalization for a randomized
relaxation of an object. The main idea is to have the parallel execution approximately
simulate the object’s correct sequential behavior, with some provided error distribution.
In their framework, one considers the parallel algorithm and bounds the probability
that it induces a large error relative to the deterministic sequential specification. This
approach is not suitable for our analysis, since the sequential object we parallelize
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(namely the sketch) is itself randomized. Thus, there are two sources of error: (1)
the approximation error in the sequential sketch and (2) the additional error induced
by the parallelization. For the former, we wish to leverage the existing literature on
analysis of sequential sketches. To bound the latter, we use a different methodology:
we first derandomize the sequential sketch by delegating its coin flips to an oracle, and
then analyze the relaxation of the (now) deterministic sketch. Finally, we leverage the
sequential sketch analysis to arrive at a distribution for the returned value of a query.

We adopt a variant of Henzinger et al.’s [59] out-of-order relaxation, which gener-
alizes quasi-linearizabilty [3]. Intuitively, this relaxation allows a query to “miss” a
bounded number of updates that precede it. Because a sketch is order agnostic, we
further allow re-ordering of the updates “seen” by a query.

Definition 2.3.1 (r-relaxed history). A sequential history H is an r-relaxation of a
sequential history H ′, if H is comprised of all but at most r of the invocations in H ′

and their responses, and each invocation in H is preceded by all but at most r of the
invocations that precede the same invocation in H ′.

A relaxed property for an object o is an extension of its sequential specification to
include also relaxed histories and thus allow more behaviors. This requires o to have a
sequential specification, so we convert sketches into deterministic objects by capturing
their randomness in an external oracle; given the oracle’s output, the sketches behave
deterministically. For the Θ sketch, the oracle’s output is passed as a hidden variable
to init, where the sketch selects the hash function. In the Quantiles sketch, a coin flip
is provided with every update.

For a derandomized sketch, we refer to the set of histories arising in its sequential
executions as SeqSketch, and use SeqSketch as its sequential specification. We can now
define our relaxed semantics:

Definition 2.3.2 (r-relaxation). The r-relaxation of SeqSketch is the set of histories
that have r-relaxations in SeqSketch:

SeqSketchr ≜ {H ′|∃H ∈ SeqSketch s.t. H is an r-relaxation of H ′}.

Note that our formalism slightly differs from that of [59] in that we start with a
serialization H ′ of an object’s execution that does not meet the sequential specification
and then “fix” it by relaxing it to a history H in the sequential specification. In other
words, we relax history H ′ by allowing up to r updates to “overtake” every query, so
the resulting relaxation H is in SeqSketch.

An example is given in Figure 2.4, where H is a 1-relaxation of history H ′. Both
H and H ′ are sequential, as the operations don’t overlap.

The impact of the r-relaxation on the sketch’s error depends on the adversary,
which may select up to r updates to hide from every query. There exist two adversary
models: A weak adversary decides which r operations to omit from every query without
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Figure 2.4: H is a 1-relaxation of H ′.

observing the coin flips. A strong adversary may select which updates to hide after
learning the coin flips. Neither adversary sees the protocol’s internal state, however
both know the algorithm and see the input. As the strong adversary knows the coin
flips, it can then extrapolate the state; the weak adversary, on the other hand, cannot.

2.4 Generic concurrent sketch algorithm

We now present our generic concurrent algorithm. The algorithm uses, as a building
block, an existing (non-parallel) sketch. To this end, we extend the standard sketch
interface in Section 2.4.1, making it usable within our generic framework. That is, any
sketch exposing this extended API can be used within our framework. Our algorithm
is adaptive – it serializes ingestion in small streams and parallelizes it in large ones. For
clarity of presentation, we present in Section 2.4.2 the parallel phase of the algorithm,
which provides relaxed semantics appropriate for large streams. Section 2.4.3 then
discusses the adaptation for small streams.

2.4.1 Composable sketches

In order to be able to build upon an existing sketch S, we first extend it to support a
limited form of concurrency. Sketches that support this extension are called composable.

A composable sketch has to allow concurrency between merges and queries. To
this end, we add a snapshot API that can run concurrently with merge and obtains a
queryable copy of the sketch. The sequential specification of this operation is as follows:

S.snapshot() returns a copy S′ of S such that immediately after S′ is returned,
S.query(arg) = S′.query(arg) for every possible arg.

A composable sketch needs to allow concurrency only between snapshots and other
snapshot and merge operations. In general, we require that such concurrent execu-
tions be strongly linearizable. Our Θ sketch, shown below, simply accesses an atomic
variable that holds the query result. In other sketches, for instance, CountMin [31],
HyperLogLog [49, 61, 39, 67], and Quantiles [73], atomic snapshots can be achieved
in a straightforward manner via a double collect of the relevant state, e.g., array of
counters. In specific sketches, this may be optimized in different ways.

Pre-filtering. When multiple sketches are used in a multi-threaded algorithm, we
can optimize them by sharing “hints” about the processed data. This is useful when
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the stream sketching function depends on the processed stream prefix. For example, we
explain below how Θ sketches sharing a common value of Θ can sample fewer updates.
Another example is reservoir sampling [117]. To support this optimization, we add the
following two APIs:

S.calcHint() returns a value h ̸= 0 to be used as a hint.

S.shouldAdd(h, a) given a hint h and a stream element a, returns a Boolean indi-
cating whether a should be added to the sketch, or may be filtered out as it does
not affect the sketch’s state.

Formally, the semantics of these APIs are defined using the notion of summary. (1)
Consider a sketch S initialized in some state s0. We say that s0 (or the sketch at
time 0) summarizes the empty history, and similarly, the empty stream; we refer to the
sketch as empty. (2) Let s′ be the sketch’s state after we sequentially ingest a stream
a1, . . . , an, namely after a sequential execution with the history

H = S.update(a1), S.resp, . . . S.update(an), S.resp.

We say that s′ summarizes history H, and, similarly, summarizes the stream a1, . . . , an.
Given a sketch state s′ that summarizes a stream A, if shouldAdd(S.calcHint(),

a) returns false then for every streams B1, B2 and sketch state s′ that summarizes
A||B1||a||B2, s′ also summarizes A||B1||B2. Note that a state summarizes two different
streams if and only if that state is reached after ingesting each of them to an empty
sketch.

These APIs do not need to support concurrency, and may be trivially implemented
by always returning true. Thus, they do not impose additional constraints on the set
of sketches usable with our generic algorithm.

Example: composable Θ sketch. Algorithm 2 presents the three additional APIs
for the Θ sketch. The composable sketch is used concurrently by a single updater
thread and multiple query threads. The est variable is atomic, and is shared among all
threads; the remaining state variables are local to the updating thread.

The snapshot method copies est. Note that the result of a merge is only visible
after writing to est, because it is the only variable accessed by the query. As est is
an atomic variable, the requirement on snapshot and merge is met. To minimize the
number of updates, calcHint returns Θ and shouldAdd checks if h(a) < Θ, which is safe
because the value of Θ in sketch S is monotonically decreasing. Therefore, if h(a) ≥ Θ
then h(a) will never enter the sampleSet.

2.4.2 Generic algorithm

We now present a generic concurrent sketch algorithm that can be instantiated with any
composobale sketch adhering to the API defined in the previous section. To simplify
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Algorithm 2 Additional methods for composable Θ sketch.
1: procedure snapshot
2: localCopy ← emptysketch
3: localCopy.est ← est
4: return localCopy

5: procedure calcHint
6: return Θ
7: procedure shouldAdd(H, arg)
8: return h(arg) < H

the presentation, we first discuss an unoptimized version of our generic concurrent
algorithm, (left column in of Algorithm 3), called ParSketch, and later an optimized
version of the same algorithm (right column of Algorithm 3).

The algorithm is instantiated by a composable sketch and sequential sketches. It
uses multiple threads to process incoming stream elements and services queries at any
time during the sketch’s construction. Specifically, it uses N worker threads, t1, . . . , tN ,
each of which samples stream elements into a local sketch localSi, and a propagator
thread t0 that merges local sketches into a shared composable sketch globalS. Although
the local sketch resides in shared memory, it is updated exclusively by its owner update
thread ti and read exclusively by t0. Moreover, updates and reads do not happen in
parallel, and so cache invalidations are minimized. The global sketch is updated only
by t0 and read by query threads. We allow an unbounded number of query threads.

After b updates are added to localSi, ti signals to the propagator to merge it with
the shared sketch. It synchronizes with t0 using a single atomic variable propi, which
ti sets to 0. Because propi is atomic, the memory model guarantees that all preceding
updates to ti’s local sketch are visible to the background thread once propi’s update
is. This signalling is relatively expensive (involving a memory fence), but we do it only
once per b items retained in the local sketch.

After signalling to t0, ti waits until propi ̸= 0 (line 125); this indicates that the
propagation has completed, and ti can reuse its local sketch. Thread t0 piggybacks the
hint H it obtains from the global sketch on propi, and so there is no need for further
synchronization in order to pass the hint.

Before updating the local sketch, ti invokes shouldAdd to check whether it needs
to process a or not. For example, the Θ sketch discards updates whose hashes are
greater than the current value of Θ. The global thread passes the global sketch’s value
of Θ to the update threads, pruning updates that would end up being discarded during
propagation. This significantly reduces the frequency of propagations and associated
memory fences.

Query threads use the snapshot method, which can be safely run concurrently
with merge, hence there is no need to synchronize between the query threads and t0.
The freshness of the query is governed by the r-relaxation. In Section 2.5.2 we prove
Lemma 2.4.1 below, asserting that the relaxation is Nb. This may seem straightforward
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Algorithm 3 Generic concurrent algorithm.
Basic algorithm

101: variables
102: composable sketch globalS, init empty
103: constant b ▷ relaxation is 2Nb
104: for each update thread ti , 0 ≤ i ≤ N
105: sketch localSi, init empty
106:
107: int counteri, init 0
108: int hinti, init 1
109: int atomic propi, init 1
110: procedure propagator
111: while true do
112: for all thread ti s.t. propi = 0 do
113: globalS.merge(localSi)
114: localSi ←empty sketch
115: propi ← globalS.calcHint()
116: procedure query(arg)
117: localCopy ← globalS.snapshot(localCopy)
118: return localCopy.query(arg)
119: procedure updatei(a)
120: if ¬shouldAdd(hinti, a) then return
121: counteri ← counteri + 1
122: localSi.update(a)
123: if counteri = b then
124: propi ← 0
125: wait until propi ̸= 0
126:
127: hinti ← propi

128: counteri ← 0
129:

Optimised algorithm
201: variables
202: composable sketch globalS, init empty
203: constant b ▷ relaxation is 2Nb
204: for each update thread ti , 0 ≤ i ≤ N
205: sketch localSi[2], init empty
206: int curi, init 0
207: int counteri, init 0
208: int hinti, init 1
209: int atomic propi, init 1
210: procedure propagator
211: while true do
212: for all thread ti s.t. propi = 0 do
213: globalS.merge(localSi[1-curi])
214: localSi[1− curi]←empty sketch
215: propi ← globalS.calcHint()
216: procedure query(arg)
217: localCopy ← globalS.snapshot(localCopy)
218: return localCopy.query(arg)
219: procedure updatei(a)
220: if ¬shouldAdd(hinti, a) then return
221: counteri ← counteri + 1
222: localSi[curi].update(a)
223: if counteri = b then
224:
225: wait until propi ̸= 0
226: curi ← 1− curi

227: hinti ← propi

228: counteri ← 0
229: propi ← 0

as Nb is the combined size of the local sketches. Nevertheless, proving this is not trivial
because the local sketches pre-filter many additional updates, which, as noted above,
is instrumental for performance.

Lemma 2.4.1. ParSketch instantiated with SeqSketch is strongly linearisable with
regards to SeqSketchr, where r = 2Nb.

A limitation of ParSketch is that update threads are idle while waiting for the prop-
agator to execute the merge. This may be inefficient, especially if a single propagator
iterates through many local sketches. In the right column of Algorithm 3, we present
the optimized OptParSketch algorithm, which improves thread utilization via double
buffering.

In OptParSketch, localSi is an array of two sketches. When ti is ready to propogate
localSi[curi], it flips the curi bit denoting which sketch it is currently working on
(line 226), and immediately sets propi to 0 (line 229) in order to allow the propagator
to take the information from the other one. It then starts digesting updates in a fresh
sketch.

Of course, the optimization is only useful as long as the propagator thread is fast
enough to empty the inactive buffers before the active ones fill up. The number of
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threads where this will saturate is highly sketch-dependant. In the example of the Θ
sketch, thanks to pre-filtering, the working threads filter out many updates without
filling their buffers, so merges are required infrequently, and we can scale to a large
number of threads with a single propagator regardless of the buffer size. In sketches
without pre-filtering, the scalability typically depends on the buffer size.

In Section 2.5.3 we prove the correctness of the optimized algorithm by simulating N

threads of OptParSketch using 2N threads running ParSketch. We do this by showing
a simulation relation [83]. We use forward simulation (with no prophecy variables),
ensuring strong linearizability. We conclude the following theorem:

Theorem 1. OptParSketch instantiated with SeqSketch is strongly linearizable with
regards to SeqSketchr, where r = 2Nb.

2.4.3 Adapting to small streams

By Theorem 1, a query can miss up to r updates. For small streams, the error induced
by this can be very large. For example, the sequential Θ sketch answers queries with
perfect accuracy in streams with up to k unique elements, but if k < r, the relaxation
can miss all updates. In other words, while the additive error is guaranteed to be
bounded by r, the relative error can be infinite.

To rectify this, we implement eager propagation for small streams, whereby update
threads propagate updates immediately to the shared sketch instead of buffering them.
Note that during the eager phase, updates are processed sequentially. Support for
eager propagation can be added to Algorithm 3 by initializing b to 1 and having the
propagator thread raise it to the desired buffer size once the stream exceeds some pre-
defined length. The correctness of the adaptation is straightforward, since the buffer
size is only used locally and only impacts the relaxation. The error analysis of the next
section can be used to determine the adaptation point.

2.5 Proofs

In Section 2.5.1 we introduce some formalisms. In Section 2.5.2 we prove that the
unoptimized algorithm is strongly linearizable with respect to the relaxed specification
SeqSketchr with r = Nb. Finally, in Section 2.5.3 we show that the the optimized
algorithm is strongly linearizable with respect to the relaxed specification SeqSketchr

with r = 2Nb.

2.5.1 Definitions

Note that the only methods invoked by ParSketch on globalS are snapshot and merge,
and since merge is only invoked by t0, the only concurrency is between a snapshot and
another operation (snapshot or merge). Recall that we required such executions of a
composable sketch to be strongly linearizable. By slight abuse of terminology, we refer
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to these operations as atomic steps, for example, we refer to the linearization point of
globalS.merge simply as “globalS.merge step”.

Likewise, as localSi is only accessed sequentially by a single thread, either ti or t0

(using propi to synchronize), we refer to the method calls shouldAdd and update as
atomic steps.

Because we prove only safety properties, we restrict out attention to finite execu-
tions. For analysis purposes we use auxiliary counters:

• An array sig_ctr[N ], that counts the number of times each thread ti signals to
the propagator (line 124).

• An array merge_ctr[N ] counting the number of times t0 executes a merge with
thread ti’s local sketch (line 113).

Recall that a sketch’s state summarizes a stream or a sequential history if it is the
state of a sketch that has processed the stream or history. We now overload the term
“summarizes” to apply also to threads.

Definition 2.5.1 (Thread summary). Consider a time t in an execution σ of Algo-
rithm 3. If at time t either propi ̸= 0 or sig_ctr[i] > merge_ctr[i], then we say that
update thread ti summarizes the history summarized by localSi at time t. Otherwise,
thread ti summarizes the empty history at time t. The propagator thread t0 summarizes
the same history as globalS at any time during an execution σ.

Note that if the first condition (propi ̸= 0 or sig_ctr[i] > merge_ctr[i]) is not
satisfied, this means that the propagator thread might be in the process of clearing
localSi in line 114.

As we want to analyze each thread’s steps in an execution, we first define the
projection from execution σ onto a thread ti.

Definition 2.5.2 (Projection). Given a finite execution σ and a thread ti, σ
∣∣∣
ti

is the
subsequence of σ consisting of steps taken by ti.

We want to prove that each thread’s summary corresponds to the sequence of up-
dates processed by that thread since the last propagation, taking into account only
those that alter local state variables. These are updates for which shouldAdd returns
true.

Definition 2.5.3 (Unpropogated updates). Given a finite execution σ, we denote by
suffi(σ) the suffix of σ

∣∣∣
ti

starting at the last globalS.merge(localSi) event, or the be-
ginning of σ if no such event exists. The unpropogated suffix up_suffi(σ) of update
thread i is the subsequence of H(suffi(σ)) consisting of update(a) executions in suffi(σ)
for which shouldAdd(hinti, arg) returns true in line 120.

We define the relation between a sequential history H and a stream A.
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Definition 2.5.4. Given a finite sequential history H, S(H) is the stream a1, . . . , an

such that ak is the argument of the kth update in H.

Finally, we define the notion of happens before in a sequential history H.

Definition 2.5.5. Given a finite sequential history H and two method invocations
M1, M2 in H, we denote M1 ≺H M2 if M1 precedes M2 in H.

2.5.2 Proof of unoptimized algorithm

Our strong linearizability proof uses two mappings, f and l, from executions to sequen-
tial histories defined as follows. For an execution σ of ParSketch, we define a mapping
f by ordering operations according to visibility points defined as follows:

• For a query, the visibility point is the snapshot operation it executes.

• For an updatei(a) where shouldAdd(propi, a) returns false at time t, its visibility
point is t.

• Otherwise, for an updatei(a), let t be the first time after its invocation in σ when
thread i changes propi to 0 (line 124). Its visibility point is the (linearization
point of the) first merge that occurs with localSi after time t. If there is no such
time, then updatei(a) does not have a visibility point, i.e., is not included in f(σ)

Note that in the latter case, the visibility point may occur after the update returns,
and so f does not necessarily preserve real-time order.

We also define a mapping l by ordering operations according to linearization points
defined as follows:

• An updates’ linearization point is its invocation

• A query’s linearization point is its visibility point.

By definition, l(σ) is prefix-preserving.
We show that for every execution σ of ParSketch, (1) f(σ) ∈ SeqSketch, and

(2) f(σ) is an r-relaxation of l(σ) for r = Nb. Together, this implies that l(σ) ∈
SeqSketchr, as needed.

We first show that Propi ̸= 0 if ti’s program counter is not on lines 124 or 125.

Invariant 1. At any time during a finite execution σ of ParSketch for every i =
1, . . . , N , if ti’s program counter isn’t on lines 124 or 125, then propi ̸= 0.

Proof. The proof is derived immediately from the algorithm: propi is initialized to 1
and gets the value of 0 on line 124, and then waits on line 125 until propi ̸= 0. After
continuing passed line 125, propi ̸= 0 again.

We also observe the following:
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Observation 2.5.6. Given a finite execution σ of ParSketch, for every i = 1, . . . , N ,
every execution of globalS.merge(localSi) in σ (line 113) is preceded by an execution
of propi ← 0 (line 124).

We observe the following relationship between ti’s program counter and sig_ctr[i]
and merge_ctr[i]:

Observation 2.5.7. At any point during a finite execution σ of ParSketch, for every
i = 1, . . . , N , merge_ctr[i] ≤ sig_ctr[i] ≤ merge_ctr[i] + 1. Moreover, if ti’s program
counter isn’t on lines 124 or 125, then sig_ctr[i] = merge_ctr[i].

We show that at every point in an execution, update thread ti summarizes up_suffi(σ).
In essence, this means that we have not “forgotten” any updates.

Invariant 2. At all times during a finite execution σ of ParSketch, for every i =
1, . . . , N , ti summarizes up_suffi(σ).

Proof. The proof is by induction on the length of σ. The base is immediate. Next we
consider a step in σ that can alter the invariant. We assume the invariant is correct for
σ′, and prove correctness for σ = σ′, step. We consider only steps that can alter the
invariant, meaning the step can either lead to a change in up_suffi(σ), or a change in
the history summarized by ti. This means we need to consider only 4 cases:

• A step localSi.update(arg) (line 122) by thread ti.

In this case, up_suffi(σ) =up_suffi(σ′), update(arg). By the inductive hypoth-
esis, before the step localSi summarizes up_suffi(σ′), and so after the update,
localSi summarizes up_suffi(σ′),
update(arg) = up_suffi(σ). From Invariant 1 propi ̸= 0, therefore, by Defini-
tion 2.5.1, ti summarizes the same history as localSi, i.e., up_suffi(σ), preserving
the invariant.

• A step propi ← 0 (line 124) by thread ti.

By the inductive hypothesis, before the step, ti summarizes the history up_suffi(σ′).
Because before the step propi ̸= 0, localSi summarizes the same history. As no
update occurs, up_suffi(σ′)=up_suffi(σ). The step doesn’t alter localSi, so after
the step, localSi still summarizes up_suffi(σ). On this step the counter sig_ctr[i]
is increased but merge_ctr[i] is not, so sig_ctr[i] > merge_ctr[i]. Therefore, by
Definition 2.5.1, ti summarizes the same history as localSi, namely up_suffi(σ),
preserving the invariant.

• A step globalS.merge(localSi) (line 113) by thread t0.

By Definition 2.5.3, after this step up_suffi(σ) is empty. As this step is a
merge, merge_ctr[i] is increased by one, so sig_ctr[i] = merge_ctr[i] by Ob-
servation 2.5.7. Therefore, by Definition 2.5.1, ti summarizes the empty history,
preserving the invariant.
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• A step propi ← globalS.calcHint() (line 115) by thread t0

Before executing the step, t0 executed line 114. Thread ti is waiting for propi ̸= 0
on line 125, therefore has not updated localSi. Therefore, by Definition 2.5.1,
localSi summarizes the empty history. As a merge with thread i was executed
and no updates have been invoked, up_suffi(σ) is the empty history. The function
calcHint cannot return 0, therefore after that step propi ̸= 0. By Definition 2.5.1,
ti summarizes the same history as localSi, i.e., the empty history. Therefore, ti

summarizes up_suffi(σ), preserving the invariant.

Next, we prove that t0 summarizes f(σ).

Invariant 3 (History of propagator thread). Given a finite execution σ of ParSketch,
t0 summarizes f(σ).

Proof. The proof is by induction on the length of σ. The base is immediate. We assume
the invariant is correct for σ′, and prove correctness for σ = σ′, step. There are two
steps that can alter the invariant.

• A step globalS.merge(localSi) (line 113) by thread t0.

By the inductive hypothesis, before the step, t0 summarizes f(σ′). And by Invari-
ant 2, before the update, ti summarizes up_suffi(σ′), and by Invariant 1 localSi

summarizes the same history. Let A = S(f(σ)), and B = S(up_suffi(σ′)). After
the merge globalS summarizes A||B. Therefore, t0 summarizes f(σ) preserving
the invariant.

• A step shouldAdd(propi, a) (line 120) by thread ti, returning false.

Let H be that last hint returned to ti, and let σ′′ be the prefix of σ up to this
point. By the induction hypothesis, at that point globalS summarized f(σ′′).
Let A = S(f(σ′′)), and let B = S(f(σ′)), and let B1 be such that B = A||B1.
By the induction hypothesis, before the step, globalS summarizes B = A||B1.
By the assumption of shouldAdd, if shouldAdd(H, arg) returns false, then if a
sketch summarizes B = A||B1||B2, then it also summarizes B = A||B1||a||B2.
Let B2 = ∅, then globalS summarizes B = A||B1||B2, therefore also summarizes
A||B1||a||B2 = A||B1||a. Therefore, after the step, globalS summarizes f(σ)
preserving the invariant.

To finish the proof that f(σ) ∈ SeqSketch, we prove that a query invoked at the end
of σ returns a value equal to the value returned by a sequential sketch after processing
A = S(f(σ)).

35



Lemma 2.5.8 (Query Correctness). Given a finite execution σ of ParSketch, let Q be
a query that returns in σ, and let v be Q’s visibility point. Let σ′ be the prefix of σ until
point v, and let A = S(f(σ′)). Q returns a value that is equal to the value returned by
a sequential sketch after processing A.

Proof. Let σ be an execution of ParSketch, and let Q be a query that returns in σ.
Let σ′ and A be as defined in the lemma. By Invariant 3, t0 summarizes f(σ′) at point
v, therefore globalS summarizes f(σ′) at the same point, therefore globalS summarizes
stream A at point v. The visibility point for the query, at point v, is globalS.snapshot().
By the requirement from S.snapshot(), for all arg globalS.query(arg) = localCopy.query(arg).
Because globalS summarizes stream A, localCopy.query(arg) returns a value equal to
the value returned by the sequential sketch globalS after processing A.

As we have proven that each query in f(σ) returns a value that estimates all the
updates that happen before its invocation, we have proven the following:

Lemma 2.5.9. Given a finite execution σ of ParSketch, f(σ) ∈ SeqSketch.

To complete the proof, we prove that f(σ) is an r-relaxation of l(σ), for r = Nb.
We begin by proving orders between queries and other method calls.

Lemma 2.5.10. Given a finite execution σ of ParSketch, and given an operation
O(query or update) in l(σ), for every Q in l(σ) such that Q ≺l(σ) O, then Q ≺f(σ) O.

Proof. If O is a query, then proof is immediate from the definitions of l and f . If O is
an update, then, by the definition of f , an updates visibility point is at the earliest its
linearization point. As Q’s visibility point and linearization point are equal, it follows
that if Q ≺l(σ) O then Q ≺f(σ) O.

We next prove an upper bound on the number of updates in up_suffi(σ). We denote
the number of updates in history H as |H|.

Lemma 2.5.11. Given a finite execution σ of ParSketch, |up_suffi(σ)| ≤ b.

Proof. As counteri is incremented before an update which is included in up_suffi(σ), it
follows that |up_suffi(σ)| ≤ counteri. When counteri = b, ti signals for a propagation
(line 124) and then waits until propi ̸= 0 (line 125). When ti finishes waiting, then
it zeros the counter (line 128) before ingesting more updates, therefore, counti ≤ b.
Therefore, it follows that |up_suffi(σ)| ≤ b.

As f(σ) contains all updates with visibility points, we can now prove the following.

Lemma 2.5.12. Given a finite execution σ of ParSketch, |f(σ)| ≥ |l(σ)| −Nb.
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Proof. From Lemma 2.5.11, |up_suffi(σ)| ≤ b. The only updates without a visibility
point are updates that are in up_suffi(σ) for some i. Therefore f(σ) contains all
updates but any update in a history up_suffi(σ) for some i. There are N update
threads, therefore |f(σ)| = |l(σ)|−

∑N
i=1|up_suffi(σ)| so |f(σ)| ≥ |l(σ)| −Nb.

We will now prove that given an execution σ of ParSketch, every invocation in
f(σ) is preceded by all but at most Nb of the invocations in l(σ).

Lemma 2.5.13. Given a finite execution σ of ParSketch, f(σ) is an Nb-relaxation of
l(σ).

Proof. Let σ be a finite execution of ParSketch, and consider an operation O in f(σ)
such that O is also in l(σ). Let Ops = {O′ | (O′ ≺l(σ) O) ∧ (O′ ⊀f(σ) O) }. We show
that |Ops| ≤ Nb. By Lemma 2.5.10, for every query Q in l(σ) such that Q ≺l(σ) O,
then Q ≺f(σ) O, meaning Q /∈ Ops. Let σpre be a prefix and σpost a suffix of σ such
that l(σ) = l(σpre), O, l(σpost). From Lemma 2.5.12, |f(σpre)| ≥ |l(σpre)| − Nb. As
|f(σpre)| is the number of updates in f(σpre), and |l(σpre)| is the number of updates
in l(σpre), f(σpre) contains all but at most Nb updates in l(σpre). As l(σpre) contains
all the updates that precede O. Meaning Ops is all the updates in l(σpre) and not in
f(σpre). Therefore, |Ops| = |l(σpre)| − |f(σpre)| ≤ Nb. Therefore, by Definition 2.3.2,
f(σ) is an Nb-relaxation of l(σ).

Putting together Lemma 2.5.9 and Lemma 2.5.13, we have shown that given a finite
execution σ of ParSketch, f(σ) ∈ SeqSketch and f(σ) is an Nb-relaxation of l(σ). We
have proven Lemma 2.4.1.

2.5.3 Optimized algorithm proof

We denote the optimized version of Algorithm 3 as OptParSketch. We prove the cor-
rectness of OptParSketch by showing that it can simulate ParSketch. This proof tech-
nique is known as a simulation relation, which, as explained in [83], Chapter 2.5, is
a correspondence relating the states of OptParSketch and ParSketch when the algo-
rithms run on the same input stream. Establishing a simulation relation proves that
OptParSketch is strongly linearizable with regards to SeqSketch2Nb [47, 17].

Consider an arbitrary worker thread ti for the optimized algorithm, and simulate
this thread using two worker threads t0

i , t1
i of the basic algorithm. To simulate N worker

threads, we need 2N threads, and they are mapped the same way.
The idea behind the simulation is that there might be a delay between the time when

the hint is returned to the worker thread and the time when this hint is used for pre-
processing, so we can simulate each thread by two threads. For example in Figure 2.5,
each block Ai is a stream such that b updates pass the test of shouldAdd (except maybe
An). The stream processed by ti is A = A1||A2|| . . . ||An and we assume n is even. Each
Ai is evaluated against the hint written above it. The thread t0

i simulates processing
A1||A3|| . . . ||An−1, and thread t1

i simulates processing A2||A4|| . . . ||An.
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Figure 2.5: Simulation of processing A = A1||A2|| . . . ||An.

The simulation uses auxiliary variables oldHint0
i , and oldHint1

i , both initialized to
1. These variables are updated with the flipping of curi (line 226), such that:

• oldHint0
i is updated to be the current (pre-flip) value of hinti

• oldHint1
i is updated to be the current (pre-flip) value of oldHint0

i

In addition, the simulation uses an auxiliary variable auxCounti initialized to 0.
This variable is set to b before the first execution of line 226, and is never changed after
that.

Finally, the simulation uses two auxiliary variables PC0
i and PC1

i to be program
counters for threads t0

i and t1
i . They are initialized to Idle.

We define a mapping g from the state of OptParSketch to the state of ParSketch

as follows:

• globalS in OptParSketch is mapped to globalS in ParSketch.

• localSi[j] is mapped to tj .localS for j = 0, 1.

• counteri is mapped to tcuri .counter.

• auxCount is mapped to t1−curi .counter.

• hinti is mapped to tcuri .hint and tcuri .prop if ti is not right before executing line
227, otherwise oldHint0

i is mapped to tcuri .hint and propi is mapped to tcuri .prop.

• propi is mapped to t1−curi .prop if ti is not right before executing lines 227-229,
otherwise oldHint1

i is mapped to t1−curi .prop.

• oldHint1
i is mapped to t1−curi .hint.

For example, Figure 2.6 shows a mapping when curi equals 0, before executing line
227. Table 2.1 shows the steps taken by t0

i and t1
i when curi = 0 before line 223.
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Figure 2.6: Reference mapping of g when curi equals 0 before executing line 227.

OptParSketch line ParSketch line Executing thread

223 123 t0
i

225 125 t1
i

226 - -

227 127 t1
i

228 128 t1
i

229 124 t0
i

Table 2.1: Example for steps taken by t0
i and t1

i for each step taken by ti when curi = 0
before line 223, meaning the “round” of b updates was ingested by t0

i . On line 226
neither thread takes a step.

We also define the steps taken in ParSketch when OptParSketch takes a step. If a
query is invoked, then both algorithms take the same step. If an update in invoked, the
update is invoked in tcuri

i in ParSketch. If the counter gets up to b (meaning we get
to line 225), then t1−curi

i executes line 125. When OptParSketch flips curi (line 226),
then neither of the threads t0

i or t1
i take a step. Afterwards, lines 227 and 228 execute

the corresponding lines (127 and 128) on thread tcuri
i , and line 229 executes 124 on

thread t1−curi
i .

Lemma 2.5.14. g is a simulation relation from OptParSketch to ParSketch.

Proof. The proof is by induction on the steps in an execution, for some thread i. In the
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initial state, the mapping trivially holds. In a given step, we refer to tcuri
i as the active

thread and t1−curi
i as the inactive thread. Query threads trivially map to themselves

and do not alter the state. We next consider update and propagator threads. First,
consider the steps of OptParSketch that execute the corresponding step on the active
thread. These are lines 219–223 and 227–228, which directly correspond to lines 119-123
and 127-128 of ParSketch in the active thread (tcuri

i ), and, except in lines 127 and 129,
the effected state variables are mapped to the same state variables in the active thread.
So these steps trivially preserve g. Line 124 in ParSketch is executed on the inactive
thread when OptParSketch executes line 229. As after this step the inactive thread’s
prop and propi are both 0, so g is preserved. Line 125 is executed on the inactive
thread, waiting on the same variable, and modifies no variables, so g is preserved.

Line 226 flips curi and neither thread takes a step in ParSketch. Here, the mappings
of prop, hint, and counter change. On this step oldHint0

i and oldHint1
i are updated as

defined, and as ti is right before executing line 227, oldHint1
i is equal to the inactive

thread’s (t1−curi
i ) hint, and, as before the step the (now) inactive thread’s prop was

equal to hinti, then after this step it is equal to oldHint0
i . As before the step the (now)

active thread’s hint was equal to oldHint0
i , after this step it is equal to oldHint1

i . Finally,
as before the step the (now) active thread’s prop was equal to propi, after this step it
remains equal to propi, so this step preserve g.

In line 227, hinti gets the value of propi, and the same happens on the active
thread. As before this line the active thread’s prop was equal to propi, after this step
the inactive thread’s prop and hint are equal to hinti, preserving g. As the active
thread’s counter is equal to counteri, line 228 preserves g. The now inactive thread
has filled its local sketch, therefore its counter is b, which equals auxCount. Finally,
the propagator thread’s steps (lines 210-215) execute on the inactive thread and it is
easy to see that all variables accessed in these steps are mapped to the same variables
in the inactive thread.

Note that the simulation relation uses no prophecy variables, i.e., does not “look into
the future”. This establishes strong linearizability [17], intuitively, because the mapping
of all ParSketch’s steps – including linearization points – to steps in OptParSketch is
prefix-preserving. Since we use two update threads of ParSketch to simulate one thread
in OptParSketch, we have proven the following theorem:

Theorem 1. OptParSketch instantiated with SeqSketch is strongly linearizable with
regards to SeqSketchr, where r = 2Nb.

2.6 Deriving error bounds

We now show how to translate the r-relaxation to a bound on the error of typical
sketches. We consider two types of error anlayzes of existing sketches. In Section 2.6.1,
we consider the relative standard error of the Θ sketch, which was used in the original
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analysis of the sketch. In Section 2.6.2 we consider PAC sketches, and show generic
error bounds for all r-relaxed implementations of PAC sketches estimating the number
of unique elements and quantiles.

2.6.1 Θ error bounds

We bound the error introduced by an r-relaxation of the Θ sketch over a stream with
n unique elements and a parameter (sketch size) of k. Given Theorem 1, the optimized
concurrent sketch’s error is bounded by the relaxation’s error bound for r = 2Nb. We
consider strong and weak adversaries, As and Aw, resp. For the strong adversary we
are able to show only numerical results, whereas for the weak one we show closed-form
bounds. The results are summarized in Table 2.2. Our analysis relies on known results
from order statistics [35]. It focuses on long streams, and assumes n > k + r.

Sequential sketch Strong adversary As Weak adversary Aw

Closed-form Numerical Numerical Closed-form
Expectation n 215 215 · 0.995 n k−1

k+r−1
RSE ≤ 1√

k−2 ≤ 3.1% ≤ 3.8% ≤ 2 1√
k−2

Table 2.2: Expectation and RSE of Θ sketch with numerical values for r = 8, k =
210, n = 215.

We would like to analyze the distribution of the kth largest element in the stream
that the relaxed sketch processes, as this determines the result returned by the algo-
rithm. We cannot use order statistics to analyze this because the adversary alters the
stream and so the stream seen by the algorithm is not random. However, the stream of
hashed unique elements seen by the adversary is random. Furthermore, if the adversary
hides from the algorithm j elements smaller than Θ, then the kth largest element in the
stream seen by the sketch is the (k + j)th largest element in the original stream seen
by the adversary. This element is a random variable and therefore we can apply order
statistics to it.

We thus model the hashed unique elements in the stream A processed before a given
query as a set of n labelled iid random variables A1, . . . , An, taken uniformly from the
interval [0, 1]. Note that A is the stream observed by the reference sequential sketch,
and also by adversary that hides up to r elements from the relaxed sketch. Let M(i) be
the ith minimum value among the n random variables A1, . . . , An.

Let est(x) ≜ k−1
x be the estimate computation with a given x = Θ (line 18 of

Algorithm 2). The sequential (non-relaxed) sketch returns e = est(M(k)). It has been
shown that the sketch is unbiased [19], i.e., E[e] = n the number of unique elements.
Moreover, previous work [115] has analyzed the relative standard error (RSE) of the
sketch, which is the standard error divided by the mean, and has shown it to be
RSE[e] ≤ 1√

k−2 .
In a relaxed history, the adversary chooses up to r variables to hide from the given
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query so as to maximize its error. It can also re-order elements, but the state of a Θ
sketch after a set of updates is independent of their processing order. Let M r

(i) be the
ith minimum value among the hashes seen by the query, i.e., arising in updates that
precede the query in the relaxed history. The value of Θ is M r

(k), which is equal to
M(k+j) for some 0 ≤ j ≤ r. We do not know if the adversary can actually control j,
but we know that it can impact it, and so for our error analysis, we consider strictly
stronger adversaries – we allow both the weak and the strong adversaries to choose the
number of hidden elements j. Our error analysis gives an upper bound on the error
induced by our adversaries. Note that the strong adversary can choose j based on the
coin flips, while the weak adversary cannot, and so it cannot distinguish the algorithm
state (set of retained elements) from a random one. Since the state is random in all
runs, it chooses the same j in all runs. We show that the largest error is always obtained
either for j = 0 or for j = r.

Claim 2.6.1. Consider j values Xi, 1 ≤ i ≤ j, in the interval [0, 1], let M(i) be the ith

minimum value among the j. The Xi that maximizes |k−1
x − n| for a given n is either

M(0) or M(j).

Proof. Assume for the sake of contradiction that the variable that maximizes |k−1
x −n|

is M(i) for 0 < i < j. We consider two cases:

• If k−1
M(i)
≤ n, as M(j) > M(i) then k−1

M(j)
< k−1

M(i)
≤ n, therefore | k−1

M(j)
−n| > | k−1

M(i)
−n|,

which is a contradiction.

• If k−1
M(i)

> n, as M(0) < M(i) then k−1
M(0)

> k−1
M(i)

> n, therefore | k−1
M(0)
−n| > | k−1

M(i)
−n|,

which is a contradiction.

Consider an adversary A whose estimate is a random variable eA, characterized by
the probability density function feA . The expectation of eA is not necessarily n, and so
the relative standard error needs to be computed as the error from the desired estimate,

Figure 2.7: Areas of M(k) and M(k+r). In the dark gray As induces Θ = M(k+r), and
in the light gray, Θ = M(k). The white area is not feasible.
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n, rather than from the expectation. This can be done using the following formula:

(RSE[eA])2 = 1
n2

∞∫
−∞

(e− n)2 · feA(e) de

We prove the following bound:

RSE[eA] ≤

√
σ2(eA)

n2 +

√
(E[eA]− n)2

n2 .

Lemma 2.6.2. The RSE of eA satisfies the inequality RSE[eA] ≤
√

σ2(eA)
n2 +

√
(E[eA]−n)2

n2 .

Proof.

(RSE[eA])2 = 1
n2

∞∫
−∞

(e− n)2 · feA(e) de

= 1
n2

∞∫
−∞

(e− E[eA] + E[eA]− n)2 · feA(e) de

≤ 1
n2

∞∫
−∞

(
(e− E[eA])2 + (E[eA]− n)2

)
· feA(e) de

= σ2(eA) + (E[eA]− n)2

n2

RSE[eA] ≤

√
σ2(eA)

n2 +

√
(E[eA]− n)2

n2

Strong adversary As The strong adversary knows the coin flips in advance, and
thus chooses j to be g(0, r), where g is the choice that maximizes the error:

g(j1, j2) ≜ arg max
j∈{j1,j2}

| k − 1
M(k+j)

− n|.

Recall the the As knows the oracles coin flips, therefore knows M(k) and M(k+r), and
chooses M r

(k) accordingly. Therefore, our analysis is on the order statistics of the full
stream, as it is this that the adversary sees. From order statistics, the joint probability
density function of M(k), M(k+r) is:

fM(k),M(k+r)(mk, mk+r) = n!
mk−1

k

(k − 1)!
(mk+r −mk)r−1

(r − 1)!
(1−mk+r)n−(k+r)

(n− (k + r))!
.
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The expectation of eAs and e2
As

can be computed as follows:

E[eAs ] =
1∫

0

mk+r∫
0

eAs · fM(k),M(k+r)(mk, mk+r) dmk dmk+r

E[e2
As

] =
1∫

0

mk+r∫
0

[eAs ]2 · fM(k),M(k+r)(mk, mk+r) dmk dmk+r

(2.1)

Finally, the RSE of eAs is derived from the standard error of eAs :

RSE[eAs ]2 = 1
n2

1∫
0

mk+r∫
0

(eAs − n)2 · fM(k),M(k+r)(mk, mk+r) dmk dmk+r

= 1
n2

1∫
0

mk+r∫
0

(eAs − E[eAs ] + E[eAs ]− n)2 · fM(k),M(k+r)(mk, mk+r) dmk dmk+r

≤ 1
n2

(
σ2(eAs) + (eAs − n)2

)
RSE[eAs ] ≤

√
σ2(eAs) + (eAs − n)2

n2

≤

√
σ2(eAs)

n2 +

√
(eAs − n)2

n2

(2.2)

In Figure 2.7 we plot the regions where g equals 0 and g equals r, based on their
possible combinations of values. The estimate induced by As is eAs ≜ k−1

M(k+g(0,r))
. The

expectation and standard error of eAs are calculated by integrating over the gray areas
in Figure 2.7 using their joint probability function from order statistics. Equations 2.1
and 2.2 give the formulas for the expected estimate and its RSE bound, respectively.
We do not have closed-form bounds for these equations. Example numerical results,
computed based on Equation 2.2, are shown in Table 2.2.

Weak adversary Aw Not knowing the coin flips, Aw chooses j that maximizes the
expected error for a random hash function: E[n − est(M r

(k))] = E[n − est(M(k+j))] =

Figure 2.8: Distribution of estimators e and eAw . The RSE of eAw with regards to n is
bounded by the relative bias plus the RMSE of eAw .
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n − n k−1
k+j−1 . Obviously this is maximized for j = r. The orange curve in Figure 2.8

depicts the distribution of eAw , and the distribution of e is shown in blue.

Recall that Aw always hides r elements smaller than Θ, thus forcing M r
(k) = M(k+r).

Here too our analysis is on the order statistics for the full stream, as this is what
the adversary sees. The expectation of eAw and e2

Aw
is computed using well known

equations from order statistics:

E[eAw ] = E

[
k − 1

M(k+r)

]
= n

k − 1
k + r − 1

E[e2
Aw

] = (k − 1)2 n(n− 1)
(k + r − 2)(k + r − 1)

σ2[eAw ] = E[e2
Aw

]− E[eAw ]2

= (k − 1)2 n(n− 1)
(k + r − 2)(k + r − 1)

−
(

n
k − 1

k + r − 1

)2

<
n(k − 1)2

k + r − 1

[
n

(k + r − 2)(k + r − 1)

]
σ2[eAw ] <

n2

k + r − 2

We derive the following equation:√
σ2[eAw ]
E[eAw ]

<
1

k − 2
(2.3)

Finally, the RSE of eAw is derived from the standard error of eAw , and as E[eAw ] <

n, and using the same “trick” as in Equation 2.2:

RSE[eAw ]2 = 1
n2

1∫
0

(eAw − n)2 · fM(k+r)(mk+r) dmk+r

<
1
n2

(
σ2(eAw) + (E[eAw ]− n)2

)
RSE[eAw ] <

√
σ2(eAw)
E[eAw ]2

+

√
(E[eAw ]− n)2

n2

Using Equation 2.3:

RSE[eAw ] <

√
1

k − 2
+ r

k − 2
(2.4)

We have shown that the RSE is bounded by
√

1
k−2 + r

k−2 for Aw. Thus, whenever r

is at most
√

k − 2, the RSE of the relaxed Θ sketch is coarsely bounded by twice that
of the sequential one. And in case k ≫ r, the addition to the RSE is negligible.
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2.6.2 Error bounds for PAC sketches

We now provide a generic analysis, considering a PAC sketch as a black box. Sec-
tion 2.6.2 studies quantiles sketches, and in Section 2.6.2, we study PAC sketches esti-
mating the number of unique elements in a stream, e.g., HyperLogLog. In both cases,
we show that if the sequential sketch’s error bound is ϵ, then the error of an r-relaxed
sketch over a stream of size n is bounded by ϵ + rϵ

n + r
n . This expression tends to ϵ as

the stream sizes grows to infinity, but may be substantially larger for small streams.
A system designer can use this formula to determine the adaptation point so that the
error is never above a desired threshold.

Quantiles error bounds

We now analyze the error for any implementation of the sequential Quantiles sketch,
provided that the sketch is PAC, meaning that a query for quantile ϕ returns an element
whose rank is between (ϕ − ϵ)n and (ϕ + ϵ)n with probability at least 1 − δ for some
parameters ϵ and δ. We show that the r-relaxation of such a sketch returns an element
whose rank is in the range (ϕ± ϵr)n with probability at least 1− δ for ϵr = ϵ− rϵ

n + r
n .

Although the desired summary is order agnostic here too, Quantiles sketch im-
plementations (e.g., [4]) are sensitive to the processing order. In this case, advance
knowledge of the coin flips can increase the error already in the sequential sketch.
Therefore, we do not consider a strong adversary, but rather discuss only the weak
one. Note that the weak adversary attempts to maximize ϵr.

Consider an adversary that knows ϕ and chooses to hide i elements below the ϕ

quantile and j elements above it, such that 0 ≤ i + j ≤ r. The rank of the element
returned by the query among the n− (i + j) remaining elements is in the range ϕ(n−
(i + j))± ϵ(n− (i + j)). There are i elements below this quantile that are missed, and
therefore its rank in the original stream is in the range:

[(ϕ− ϵ)(n− (i + j)) + i, (ϕ + ϵ)(n− (i + j)) + i] . (2.5)

This can be rewritten as:

[ϕn− (ϕj − (1− ϕ)i + ϵ(n− (i + j))),

ϕn + ((1− ϕ)i− ϕj + ϵ(n− (i + j)))]
(2.6)

Note that this interval is symmetric around ϕ(n − (i + j)) + i. The adversary
attempts to maximize the distance of the edges of this interval from the true rank,
(i.e., maximize ϵr). The distance between the central points is:

|ϕn + (1− ϕ)i− ϕj − ϕn| = |(1− ϕ)i− (ϕ)j|.

Given that 0 ≤ i + j ≤ r, we show that this expression is maximized for i + j = r.
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Claim 2.6.3. Given 0 ≤ i, j such that 0 ≤ i + j ≤ r, the expression |(1 − ϕ)i − (ϕ)j|
is maximized for (i, j) = (x, y) such that x + y = r.

Proof. Assume by contradiction that the expression given in the claim is maximized
for (x, y) such that x + y = r′ < r. Denote r′ = r − k. We consider two cases for the
expression (1− ϕ)i− (ϕ)j.

If (1 − ϕ)x − (ϕ)y ≥ 0, then (1 − ϕ)(x + k) − (ϕ)y ≥ (1 − ϕ)x − (ϕ)y > 0. In this
case denote x′ = x + k and y′ = y.

If (1 − ϕ)x − (ϕ)y < 0, then (1 − ϕ)x − (ϕ)(y + k) ≤ (1 − ϕ)x − (ϕ)y < 0. In this
case denote x′ = x and y′ = y + k.

In both cases we found (x′, y′) such that x′+y′ = r and the expression |(1−ϕ)i−(ϕ)j|
is maximized for (i, j) = (x′, y′).

By substituting j = r − i into the error formula, we get:

|(1− ϕ)i− (ϕ)(r − i)| = |i− ϕr|.

As 0 ≤ ϕ ≤ 1, the following claim follows immediately:

Claim 2.6.4. For ϕ ≤ 0.5 the adversary maximizes the distance by choosing i = r (and
therefore j = 0) and for ϕ > 0.5 the adversary maximizes the error by choosing i = 0
(and therefore j = r).

We begin by analyzing the range given in Equation 2.6 for 0 ≤ ϕ ≤ 0.5.

Claim 2.6.5. For 0 ≤ ϕ ≤ 0.5 and i, j > 0 such that 0 ≤ i + j ≤ r and ϵ < 0.5, then:
(1) (1−ϕ)i−ϕj+ϵ(n−(i+j)) ≤ (1−ϕ)r+ϵ(n−r), and (2) ϕj−(1−ϕ)i+ϵ(n−(i+j)) ≤
(1− ϕ)r + ϵ(n− r).

Proof. As ϕ ≤ 0.5, and ϵ≪ 0.5 then 1− ϕ− ϵ > 0. As 0 ≤ i + j ≤ r, then i ≤ r.

f(i, j) = (1− ϕ)i− ϕj + ϵ(n− (i + j)) ≤ (1− ϕ)i + ϵ(n− i) ≤ (1− ϕ− ϵ)i + ϵn

(2.7)

≤ (1− ϕ− ϵ)r + ϵn = (1− ϕ)r + ϵ(n− r) = f(r, 0) (2.8)

As ϕ ≤ 0.5, then ϕ ≤ 1− ϕ, and as As 0 ≤ i + j ≤ r, then i ≤ r

ϕj − (1− ϕ)i + ϵ(n− (i + j)) ≤ (1− ϕ)j + ϵ(n− j) ≤ (1− ϕ)r + ϵ(n− r) (2.9)

We next analyze the same range for 0.5 < ϕ ≤ 1.

Claim 2.6.6. For 0.5 < ϕ ≤ 1 and i, j > 0 such that 0 ≤ i + j ≤ r and ϵ < 0.5, then:
(1) ϕi− (1−ϕ)j + ϵ(n− (i + j)) ≤ ϕr + ϵ(n− r), and (2) (1−ϕ)i−ϕj + ϵ(n− (i + j)) ≤
ϕr + ϵ(n− r).
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Proof. As ϕ > 0.5, and ϵ≪ 0.5 then ϕ− ϵ > 0. As 0 ≤ i + j ≤ r, then i ≤ r.

f(i, j) = ϕi− (1− ϕ)j + ϵ(n− (i + j)) ≤ ϕi + ϵ(n− i) ≤ (ϕ− ϵ)i + ϵn ≤ ϕr + ϵ(n− r) = f(r, 0)
(2.10)

As ϕ > 0.5, then (1− ϕ) ≤ ϕ, and as As 0 ≤ i + j ≤ r, then i ≤ r

(1− ϕ)i− ϕj + ϵ(n− (i + j)) ≤ ϕi + ϵ(n− i) ≤ ϕr + ϵ(n− r) (2.11)

Putting the two claims together we get:

Claim 2.6.7. For 0 ≤ ϕ ≤ 1 and i, j > 0 such that 0 ≤ i+j ≤ r and ϵ≪ 0.5, then: (1)
ϕi−(1−ϕ)j+ϵ(n−(i+j)) ≤ r+ϵ(n−r), and (2) (1−ϕ)i−ϕj+ϵ(n−(i+j)) ≤ r+ϵ(n−r).

Proof. From Claim 2.6.5, for 0 ≤ ϕ ≤ 0.5 then both inequalities are bounded by
(1− ϕ)r + ϵ(n− r), and as ϕ ≥ 0 then (1− ϕ)r + ϵ(n− r) ≤ r + ϵ(n− r).

From Claim 2.6.6, for 0.5 < ϕ ≤ 1 then both inequalities are bounded by ϕr + ϵ(n−
r), and as ϕ ≤ 1 then ϕr + ϵ(n− r) ≤ r + ϵ(n− r).

Finally, we prove a bound on the rank of the element returned.

Lemma 2.6.8. Given parameters (ϵ, δ) if ϵ < 0.5, then the r-relaxed quantiles sketch
returns an element whose rank is between (ϕ − ϵr)n and (ϕ + ϵr)n with probability at
least 1− δ, where ϵr = ϵ− rϵ

n + r
n .

Proof. Given parameters (ϵ, δ), and given that the adversary hides i elements below
the ϕ quantile and j elements above it, such that 0 ≤ i + j ≤ r, the rank of the element
returned by the query is in the range given in Equation 2.6 w.p. at least 1− δ:

[ϕn− (ϕj − (1− ϕ)i + ϵ(n− (i + j))), ϕn + ((1− ϕ)i− ϕj + ϵ(n− (i + j)))] .

From Claim 2.6.7, this range is contained within the range:

[ϕn− (r + ϵ(n− r)), ϕn + (r + ϵ(n− r))] .

Which can be rewritten as the range
(
ϕ±

(
ϵ− rϵ

n + r
n

))
n. Meaning the rank of the

element returned is between (ϕ − ϵr)n and (ϕ + ϵr)n with probability at least 1 − δ,
where ϵr = ϵ− rϵ

n + r
n .

We have shown that the r-relaxed sketch returns an element whose rank is between
(ϕ − ϵr)n and (ϕ + ϵr)n with probability at least 1 − δ, where ϵr = ϵ − rϵ

n + r
n . Thus

the impact of the relaxation diminishes as n grows.
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Count unique elements error bounds

Finally, we consider the error of any implementation of a count unique elements sketch,
provided that the sketch is PAC. In this case, for a stream with n unique elements, the
query returns an estimate e which is in between (1− ϵ)n and (1 + ϵ)n with probability
at least 1 − δ for some parameters ϵ and δ. We show that the r-relaxation of such a
sketch returns an estimate is in the range (1± ϵr)n with probability at least 1− δ for
ϵr = ϵ + rϵ

n + r
n .

As in a Quantiles sketch, advance knowledge of the coin flip can increase the error
already in the sequential sketch. Therefore, here too, we focus on a weak adversary.
As above, the adversary hides either no elements or r elements. If the adversary hides
r elements, the estimate returned is in the range (1± ϵ)(n− r).

The adversary thus chooses whether to hide r elements or not based on which
estimate maximizes the error |n− e|. In either case, with probability at least 1− δ the
estimate is between (1 − ϵ)(n − r) and (1 + ϵ)n. This range is contained in the range
n
(
1±

(
ϵ + rϵ

n + r
n

))
. We can define ϵr ≜ ϵ + rϵ

n + r
n . Note that, as in the case of the

Quantiles sketch, here too, the impact of the relaxation diminishes as n grows.

2.7 Θ sketch evaluation

This section presents an evaluation of an implementation of our algorithm for the Θ
sketch. Section 2.7.1 presents the methodology for the analysis. Section 2.7.2 shows
the results under different workloads and scenarios. Finally, Section 2.7.3 discusses the
tradeoff between accuracy and throughput.

2.7.1 Setup and methodology

Our implementation [34] extends the code in Apache DataSketches [11], a Java open-
source library of stochastic streaming algorithms. The Θ sketch there differs slightly
from the KMV Θ sketch we used as a running example, and is based on a HeapQuick-
SelectSketch family. In this version, the sketch stores between k and 2k items, whilst
keeping Θ as the kth largest value. When the sketch is full, it is sorted and the largest
k values are discarded.

Concurrent Θ sketch is generally available in the Apache DataSketches library since
V0.13.0. The sequential implementation and the sketch at the core of the global sketch
in the concurrent implementation are the both
HeapQuickSelectSketch, which is the default sketch family.

We implement a limit for eager propagation as a function of the configurable error
parameter ϵ; the function we use is 2/ϵ2. The local sketches define b as a function of k,
ϵ, and N (the number of writer threads) such that the error induced by the relaxation
when in the lazy propagation mode does not exceed e using Equation 2.4. Thus the
total error is bounded by max{ϵ + 1√

k
, 2√

k
}.
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Eager propagation, as described in the pseudo-code, requires context switches in-
curring a high overhead. In the implementation, either the local thread itself executes
every update to the global sketch (equivalent to a buffer size of 1) or lazily delegates
updates to a background thread. While the sketch is in eager propagation mode, the
global sketch is protected by a shared boolean flag. When the sketch switches to es-
timate mode it is guaranteed that no eager propagation gets through; instead local
threads pass the buffer via lazy propagation. This implementation ensures that: (a)
local threads avoid costly context switches when the sketch is small, and (b) lazy prop-
agation by a background thread is done without synchronization.

Unless stated otherwise, we use k=4096, which is commonly used [11] for the Θ
sketch. The sequential sketch’s RSE with this buffer size is 0.031 with a probability of
at least 0.95. In the concurrent sketch, we chose to limit the error to ϵ = 0.04 with
the same probability. Given a particular number of threads N , b is derived according
to Equation 2.4 with r = 2Nb. Recall that the analysis in Section 2.6.1 (including this
equation) is conditioned on the assumption that n > k + r. Therefore, if we would set
the eager adaptation threshold to k + 2Nb, we would get the same error bound for any
sketch size. However, this is a conservative choice. We experiment with a threshold of
1250, and show that empirically, the error is reasonable with this choice. In general,
this is a configurable parameter, which can be used by system designers to navigate
the tradeoff between accuracy and performance.

Our first set of tests run on a 12-core Intel Xeon E5-2620 machine – this machine
is similar to that which is used by production servers. For the scalability evaluation
(shown in the introduction) we use a 32-core Intel Xeon E5-4650 to get a large number of
threads. Both machines have hyper-threading disabled, as it introduces non-monotonic
effects among threads sharing a core.

We focus on two workloads: (1) write-only – updating a sketch with a stream of
unique values; (2) mixed read-write workload – updating a sketch with background
reads querying the number of unique values in the stream. Background reads refer to
dedicated threads that occasionally (with 1ms pauses) execute a query. These workloads
simulate scenarios where updates are constantly streaming from a feed or multiple feeds,
while queries arrive at a lower rate.

To run the experiments we employ a multi-thread extension of the characterization
framework. This is the Apache DataSketch evaluation benchmark suite, which measures
both the speed and accuracy of the sketch.

For measuring write throughput, the sketch is fed with a continuous data stream.
The size of the stream varies from 1 to 8M unique values. For each size x we measure the
time t it takes to feed the sketch x unique values, and present it in term of throughput
(x/t). To minimize measurement noise, each point on the graph represents an average
of many trials. Small stream sizes tend to suffer more from measurement noise, so
the number of trials is very high (in the millions). As the stream size gets larger, the
number of trials gradually decreases down to 16 in the largest stream.
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Note that accuracy is measured relative to the number of unique elements ingested
to the sketch before a query in some linearization; because we cannot empirically deduce
the linearization point of a query that is run in parallel with updates, the metric is only
well-defined when the query is not concurrent to any update. Therefore, we measure
accuracy only in a single-thread environment, where we periodically interleave queries
with updates of the same thread. The accuracy with more threads can be extrapolated
from these measurements based on the theoretical analysis.

As in the performance evaluations, the x-axis represents the number of unique
values fed into the sketch by a single writing thread. For each size x, one trial logs the
estimation result after feeding x unique values to the sketch. In addition, it logs the
Relative Error (RE) of the estimate, where RE = MeasuredValue/TrueValue− 1. This
trial is repeated 4K times, logging all estimation and RE results. The curves depict the
mean and some quantiles of the distributions of error measured at each x-axis point on
the graph, including the median. This type of graph is called a “pitchfork”.

2.7.2 Results

Accuracy results Our first set of tests runs on a 12-core Intel Xeon E5-2620 ma-
chine. The accuracy results for the concurrent Θ sketch without eager propagation are
presented in Figure 2.9a. There are two interesting phenomena worth noting. First,
it is interesting to see empirical evaluation reflecting the theoretical analysis presented
in Section 2.6.1, where the pitchfork is distorted towards underestimating the number
of unique values. Specifically, the mean relative error is smaller than 0 (showing a
tendency towards underestimating), and the relative error in all measured quantiles
tends to be smaller than the relative error of the sequential implementation.

Second, when the stream size is less than 2k, Θ = 1 and the estimation is the
number of values propagated to the global sketch. If we forgo eager propagation, the
number of values in the global sketch depends on the delay in propagation. The smaller
the sketch, the more significant the impact of the delay, and the mean error reaches as
high as 94% (the error in the figure is capped at 10%). As the number of propagated
values approaches 2k, the delay in propagation is less significant, and the mean error
decreases. This excessive error is remedied by the eager propagation mechanism. The
maximum error allowed by the system is passed as a parameter to the concurrent
sketch, and the global sketch uses eager propagation to stay within the allowed error
limit. Figure 2.9b depicts the accuracy results when applying eager propagation. The
figures are similar when the sketch begins lazy propagation, and the error stays within
the 0.04 limit as long as eager propagation is used.

Write-only workload Figure 2.10a presents throughput measurements for a write-
only workload. The results are shown in log log scale. Figure 2.10b zooms-in on the
throughput of large streams. As explained in Section 2.7.1, we compare the concurrent
implementation to a lock-based approach. The number of threads in both implemen-
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(a) No eager propagation (ϵ = 1.0)

(b) With eager propagation, error bound defined by ϵ = 0.04
Figure 2.9: Concurrent Θ measured quantiles vs RE, k = 4096.

tations refers to the number of worker threads; there can be arbitrarily many reader
threads.

When considering large stream sizes, the concurrent implementation scales with
the number of threads, peaking at almost 300M operations per second with 12 threads.
The performance of the lock-based implementation, on the other hand, degrades as the
contention on the lock increases. At the peak measured performance the single threaded
concurrent Θ sketch outperforms the single threaded lock based implementation by 12x,
and with 12 threads by more than 45x.

For small streams, wrapping a single thread with a lock is the most efficient method.
Once the stream contains more than 200K unique values, using a concurrent sketch with
4 or more local threads is more efficient. The crossing point where a single local buffer
is faster than the lock-based implementation is around 700K unique values.

Mixed workload Figure 2.11 presents the throughput measurements of a mixed
read-write workload. We compare runs with a single updating thread and 2 updating
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threads (and 10 background reader threads). Although we see similar trends as in
the write-only workload, the effect of background readers is more pronounced in the
lock-based implementation than in the concurrent one; this is expected as the reader
threads compete for the same lock as the writers. The peak throughput of a single
writer thread in the concurrent implementation is 55M ops/sec both with and without
background readers. The peak throughput of a single writer thread in the lock-based
implementation degrades from 25M ops/sec without background reads to 23M ops/sec
with them; this is an almost 10% slowdown in performance. Recall that in this scenario
reads are infrequent, and so the degradation is not dramatic.

Scalability results To provide a better scalability analysis, we aim to maximize
the number of threads working on the sketch. Therefore, we run this test on a larger
machine – we use a 32-core Xeon E5-4650 processors. We ran an update-only workload
in which a sketch is built from a very large stream, repeating each test 16 times.

In Figure 2.3 (in the introduction) we compare the scalability of our concurrent
Θ sketch and the original sketch wrapped with a read/write lock in an update-only
workload, for b = 1 and k = 4096. As expected, the lock-based sequential sketch does
not scale, and in fact it performs worse when accessed concurrently by many threads.
In contrast, our sketch achieves almost perfect scalability. Θ quickly becomes small
enough to allow filtering out most of the updates and so the local buffers fill up slowly.

2.7.3 Accuracy-throughput tradeoff

The speedup achieved by eager propagation in small streams is presented in Figure 2.12.
This is an additional advantage of eager propagation in small streams, beyond the
accuracy benefit reported in Figure 2.9. The improvement is as high as 84x for tiny
sketches, and tapers off as the sketch grows. The slowdown in performance when the
sketch size exceeds 2k can be explained by the reduction in the local buffer size (from
b = 16 to b = 5), needed in order to accommodate for the required error bound.

Next we discuss the impact of k. One way to increase the throughput of the con-
current Θ sketch is by increasing the size of the global sketch, namely increasing k.
On the other hand, this change also increases the error of the estimate. Table 2.3
presents the tradeoffs between performance and accuracy. Specifically, it presents the
crossing-point, namely the smallest stream size for which the concurrent implemen-
tation outperforms the lock-based implementation (both running a single thread). It
further presents the maximum values (across all stream sizes) of the median error and
99th percentile error for a variety of k values. The table shows that as the sketch
promises a smaller error (by using a larger k), a larger stream size is needed to justify
using the concurrent sketch with all its overhead.
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thpt crossing point mean error error Q = 0.99
k = 256 15,000 0.16 0.27
k = 1024 100,000 0.05 0.13
k = 4096 700,000 0.03 0.05

Table 2.3: Performance vs accuracy as a function of k.

2.8 Conclusions

Sketches are widely used by a range of applications to process massive data streams
and answer queries about them. Library functions producing sketches are optimized
to be extremely fast, often digesting tens of millions of stream elements per second.
We presented a generic algorithm for parallelizing such sketches and serving queries in
real-time; the algorithm is strongly linearizable with regards to relaxed semantics. We
showed that the error bounds of two representative sketches, Θ and Quantiles, do not
increase drastically with such a relaxation. We also implemented and evaluated the
solution, showed it to be scalable and accurate, and integrated it into the open-source
Apache DataSketches library. While we analyzed only two sketches, future work may
leverage our framework for other sketches. Furthermore, it would be interesting to
investigate additional uses of the hint, for example, in order to dynamically adapt the
size of the local buffers and respective relaxation error.
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(a) Throughput, loglog scale

(b) Zooming-in on large sketches
Figure 2.10: Write-only workload, k = 4096, ϵ = 0.04.
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Chapter 3

Intermediate Value
Linearizability: A Quantitative
Correctness Criterion

3.1 Introduction

3.1.1 Motivation

Sketches are quantitative objects that support update and query operations, where
the return value of a query is from an ordered set. They are essentially succinct
(sublinear) summaries of a data stream. For example, a sketch might estimate the
number of packets originating from any IP address, without storing a record for every
possible address. Typical sketches are probably approximately correct (PAC), estimating
some aggregate quantity with an error of at most ϵ with probability at least 1 − δ for
some parameters ϵ and δ. We say that such sketches are (ϵ, δ)-bounded.

The ever increasing rates of incoming data create a strong demand for parallel
stream processing [32, 61]. In order to allow queries to return fresh results in real-time
without hampering data ingestion, it is paramount to support queries concurrently
with updates [99, 111]. But parallelizing sketches raises some important questions, for
instance: What are the semantics of overlapping operations in a concurrent sketch?,
How can we prove error guarantees for such a sketch?, and, in particular, Can we reuse
the myriad of clever analyses of existing sketches’ error bounds in parallel settings
without opening the black box? In this paper we address these questions.

3.1.2 Our contributions

The most common correctness condition for concurrent objects is linearizability. Roughly
speaking, it requires each parallel execution to have a linearization, which is a sequen-
tial execution of the object that “looks like” the parallel one. (See Section 3.2 for a
formal definition.) But sometimes linearizability is too restrictive leading to a high
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implementation cost, as is shown in this paper and motivates other works on relaxing
linearizability [59, 6, 92, 24, 3].

In Section 3.3, we propose Intermediate Value Linearizability (IVL), a new correct-
ness criterion for quantitative objects. Intuitively, the return value of an operation
of an IVL object is bounded between two legal values that can be returned in lin-
earizations. The motivation for allowing this is that if the system designer is happy
with either of the legal values, then the intermediate value should also be fine. For
example, consider a system where processes count events, and a monitoring process
detects when the number of events passes a threshold. The monitor constantly reads a
shared counter, which other processes increment in batches. If an operation increments
the counter from 4 to 7 batching three events, IVL allows a concurrent read by the
monitoring process to return 6, although there is no linearization in which the counter
holds 6. We formally define IVL and prove that this property is local, meaning that a
history composed of IVL objects is itself IVL. This allows reasoning about single ob-
jects rather than about the system as a whole. We formulate IVL first for deterministic
non-randomized objects, and then extend it to capture randomized ones.

Next, we consider (ϵ, δ)-bounded algorithms like data sketches. Existing (sequential)
algorithms have sequential error analyses which we wish to leverage for the concurrent
case. In Section 3.4 we formally define (ϵ, δ)-bounded objects, including concurrent
ones. We then prove a key theorem about IVL, stating that an IVL implementation
of a sequential (ϵ, δ)-bounded object is itself (ϵ, δ)-bounded. The importance of this
theorem is that it provides a generic way to leverage the vast literature on sequential
(ϵ, δ)-bounded sketches [89, 48, 25, 82, 31, 4] in concurrent implementations.

In Section 3.5, we present four examples of IVL objects, each showing a different
way in which IVL can be used. We first present a wait-free IVL implementation of
a batched counter from single-writer-multi-reader (SWMR) registers with O(1) step
complexity for update operations (we will later show that linearizable implementations
are inherently more costly). We then showcase an (ϵ, δ)-bounded object, via the example
of a concurrent CountMin (CM) sketch [31], which estimates the frequencies of items in
a data stream. We prove that a straightforward parallelization of this sketch is IVL. By
the aforementioned theorem, we deduce that the concurrent sketch adheres to the error
guarantees of the original sequential one, without having to “open” the analysis. We
note that this parallelization is not linearizable. We further show that an r-relaxation
of the IVL CM sketch – analogous to r-relaxations of linearizability [59] – allows for
efficient concurrent implementations which preserve the sketch’s error up to an additive
constant.

We then show that data structure iterators returning non-atomic snapshots [12,
86] can be captured via IVL. To this end, we augment their specification and imple-
mentation with an auxiliary history variable, holding “tombstones” for deleted items.
Note that we add the auxiliary variable both at the concrete level (the data structure
is augmented to track its removals in an auxiliary variable holding tombstones) and
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at the abstract level (the iterator in the augmented sequential specification returns
a set including tombstones). The algorithm augmented with the auxiliary variable is
an IVL implementation of the augmented sequential specification. We show that this
specification captures the standard notion of non-atomic iterators [12, 86]. Our last ex-
ample illustrates that in some cases, IVL needs to be paired with additional correctness
criteria, and discuss the example of an IVL and sequentially consistent [105] priority
queue.

Finally, we show that IVL is sometimes inherently cheaper than linearizability. We
illustrate this in Section 3.6 via the example of a batched counter. We prove a lower
bound of Ω(n) step complexity for the update operation of any wait-free linearizable
implementation, using only SWMR registers. As our IVL implementation has a step
complexity of O(1) for update operations, this exemplifies that there is an inherent
and unavoidable cost when implementing linearizable algorithms, which can be circum-
vented by implementing IVL algorithms instead.

3.2 Preliminaries

Section 3.2.1 discusses deterministic shared memory objects and defines linearizability.
In Section 3.2.2 we discuss randomized algorithms and their correctness criteria.

3.2.1 Deterministic objects

We consider a standard shared memory model [60], where a set of asynchronous pro-
cesses access atomic shared memory variables. Accessing these shared variables is
instantaneous. Processes take steps according to an algorithm, which is a deterministic
state machine, where a step can access a shared memory variable, do local compu-
tations, and possibly return some value. A state of the system is an assignment of
values to all shared and local variables. An execution of an algorithm is an alternating
sequence of steps and states. We focus on algorithms that implement objects, which
support operations, such as read and write. Operations begin with an invocation
step and end with a response step. A schedule, denoted σ, is the order in which pro-
cesses take steps, and the operations they invoke in invoke steps with their parameters.
Because we consider deterministic algorithms, σ uniquely defines an execution of a
given algorithm.

A history is the sequence of invoke and response steps in an execution. Given
an algorithm A and a schedule σ, H(A, σ) is the history of the execution of A with
schedule σ. A sequential history is an alternating sequence of invocations and their
responses, beginning with an invoke step. We denote the return value of operation
op with parameter arg in history H by ret(x.op, H), where x is the object exposing
operation op. We refer to the invocation step of operation op with parameter arg by
process p as invp(x.op(arg)) and to its response step by rspp(x.op(arg)→ ret), where
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ret = ret(x.op, H), and where x in the object exposing operation op. We omit x and arg

when obvious from context. A history defines a partial order on operations: Operation
op1 precedes op2 in history H, denoted op1 ≺H op2, if rsp(op1) precedes inv(op2(arg))
in H. Two operations are concurrent if neither precedes the other.

A well-formed history is one that does not contain concurrent operations by the
same process, and where every response event for operation op is preceded by an invo-
cation of the same operation. A schedule is well-formed if it gives rise to a well-formed
history, and an execution is well-formed if it is based on a well-formed schedule. We
denote by H|x the sub-history of H consisting only of invocations and responses on
object x. Operation op is pending in a history H if op is invoked in H but does not
return.

Correctness of an object’s implementation is defined with respect to a sequential
specification H, which is the object’s set of allowed sequential histories. If the history
spans multiple objects, H consists of sequential histories H such that for all objects
x, H|x pertains to x’s sequential specification (denoted Hx). A linearization [60] of
a concurrent history H is a sequential history H ′ such that (1) after removing some
pending operations from H and completing others, it contains the same invocations and
responses as H ′ with the same parameters and return values, and (2) H ′ preserves the
partial order ≺H . Note that our definition of linearization diverges from the one in [60]
in that it is not associated with any sequential specification; instead we require that
the linearization pertain to the sequential specification when defining linearizability as
follows: Algorithm A is a linearizable implementation of a sequential specification H
if every history of a well-formed execution of A has a linearization in H. An object is
total if every history H containing a pending operation can be extended by a response
to a history H ′, where H ′ ∈ H. In this paper we consider only total objects [60].

3.2.2 Randomized algorithms

In randomized algorithms, processes have access to coin flips from some domain Ω.
Every execution is associated with a coin flip vector #»c = (c1, c2, . . . ), where ci ∈
Ω is the ith coin flip in the execution. A randomized algorithm A is a probability
distribution over deterministic algorithms {A( #»c )} #»c ∈Ω∞ 1, arising when A is instantiated
with different coin flip vectors. We denote by H(A, #»c , σ) the history of the execution
of randomized algorithm A observing coin flip vector #»c in schedule σ.

Golab et al. show that randomized algorithms that use concurrent objects require a
stronger correctness criterion than linearizability, and propose strong linearizability [53].
Roughly speaking, strong linearizability stipulates that the mapping of histories to
linearizations must be prefix-preserving, so that future coin flips cannot impact the
linearization order of earlier events. In Definition 3.3.4, we capture this notion by
requiring that the adversary decide on linearization points before observing the coin-

1We do not consider non-deterministic objects in this paper.
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flips.

3.3 Intermediate value linearizability

Section 3.3.1 introduces definitions that we utilize to define IVL. Section 3.3.2 defines
IVL for deterministic algorithms and proves that it is a local property. Section 3.3.3
extends IVL for randomized algorithms, and Section 3.3.5 compares IVL to other cor-
rectness criteria.

3.3.1 Definitions

Our definitions use the notion of skeleton histories: A skeleton history is a sequence of
invocation and response events, where the return values of the responses are undefined,
denoted ?. For a history H, we define the operator H? as altering all response values
in H to ?, resulting in a skeleton history.

In this paper we discuss correctness criteria for a class of objects we call quantitative.
These are objects that support two operations: (1) update, which captures all mutating
operations that do not return a value; and (2) query, which returns a value from some
partially ordered set (poset). A poset defines a partial relation between elements from
the set, denoted ≤. In Section 3.5 we exemplify our definitions for three types of return
values: (1) numerical values (a totally ordered domain), (2) sets of elements ordered
by containment (a partially ordered domain), and (3) ranked items stored in a priority
queue (a totally ordered domain).

In a deterministic quantitative object the return values of query operations are
uniquely defined. Namely, the object’s sequential specification H contains exactly one
history for every sequential history skeleton H; we denote this history by τH(H). Thus,
τH(H?) = H for every history H ∈ H. Furthermore, for every sequential skeleton
history H, by definition, τH(H) ∈ H. Note that if the object is not deterministic,
τH(H?) isn’t uniquely defined. We use the following example to show how skeleton
histories can be linearized and then converted back to histories:

Example 3.3.1. Consider an execution in which a batched counter (formally defined in
Section 3.6) initialized to 0 is incremented by 3 by process p concurrently with a query
by process q, which returns 0. Its history is:

H = invp(inc(3)), invq(query), rspp(inc), rspq(query → 0).

The skeleton history H? is:

H? = invp(inc(3)), invq(query), rspp(inc), rspq(query →?).
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A possible linearization of H? is:

H ′ = invp(inc(3)), rspp(inc), invq(query), rspq(query →?).

Given the sequential specification H of a batched counter, we get:

τH(H ′) = invp(inc(3)), rspp(inc), invq(query), rspq(query → 3).

In a different linearization, the query may return 0 instead.

3.3.2 Intermediate value linearizability

We now define intermediate value linearizability.

Definition 3.3.2 (Intermediate value linearizability). A history H of an object is IVL
with respect to sequential specification H if there exist two linearizations H1, H2 of H?

such that for every query Q that returns in H,

ret(Q, τH(H1)) ≤ ret(Q, H) ≤ ret(Q, τH(H2)).

Algorithm A is an IVL implementation of a sequential specification H if every
history of a well-formed execution of A is IVL with respect to H.

Note that a linearizable object is trivially IVL, as the skeleton history of the lin-
earization of H plays the roles of both H1 and H2. We emphasize that in a sequential
execution, an IVL object is not relaxed in any way – it must follow the sequential
specification. Similarly, in a well-formed history, operations of the same process never
overlap, and so IVL executions satisfy program order.

We now show that IVL is both local and non-blocking(as defined in [60]):

Lemma 3.3.3. A history H of a well-formed execution of algorithm A over a set of
objects X is IVL if and only if for each object x ∈ X , H|x is IVL.

Proof. Let A be a deterministic algorithm, and let Hx be the sequential specification
of object x, for every x ∈ X . The “only if” part is immediate.

Denote by Hx
1 , Hx

2 the linearizations of H|x? given by the definition of IVL. We first
construct a linearization H1 of H?, i.e., the order ≺H1 , as follows: For every pending
operation on object x, we either add the corresponding response or remove it based
on Hx

1 . We then construct a partial order of operations as the union of {≺Hx
1
}x∈X

and the realtime order of operations in H. As each ≺Hx
1

must adhere to the realtime
order of H|x, and therefore H, and the set of operations {≺Hx

1
}x∈X are disjoint, this

partial order is well defined. Consider two concurrent operations op1, op2 in H. If they
do not belong to the same history H|x for some object x, we order them arbitrarily in
≺H1 . We construct linearization H2 of H2 by defining the order of operations ≺H2 in a
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similar fashion, where the added responses or removed pending operations are based
on Hx

2 instead of Hx
1 .

By construction all invocations and responses appearing in H? appear both in H1

and in H2, and H1 and H2 preserve the partial order ≺H? . Therefore, H1 and H2 are
linearizations of H?.

Consider some read R on some object x ∈ X that returns in H. As H|x is
IVL ret(R, τHx(Hx

1 )) ≤ ret(R, H|x) ≤ ret(R, τHx(Hx
2 )). Note that ret(R, H|x) =

ret(R, H). Furthermore, ret(R, τHx(Hx
1 )) = ret(R, τH(H1)) and ret(R, τHx(Hx

2 )) =
ret(R, τH(H2)), as objects other than x do not affect the return value of this operation.
Therefore H is IVL.

Locality allows system designers to reason about their system in a modular fashion.
Each object can be built separately, and the system as a whole still satisfies the property.

Theorem 3.1. Let H be an IVL history of a well-formed execution of a algorithm
A. If invp(op(arg)) is an invocation of a pending operation in H, then there exists
rspp(op)→ ret such that H · rspp(op)→ ret is IVL.

Proof. Let H be an IVL history of a well-formed execution of a algorithm A. Let
invp(op(arg)) be an invocation of a pending operation in H. If the invocation is not
that of a query operation, then H · rspp(op)→ ⊥ is IVL. Otherwise, denote the query
as Q.

Let H? be the skeleton history of H. As A implements a total object, H can be
extended with a response to Q, and therefore H? can be extended with rspp(op) →?.
Denote H ′ = H? ·rspp(op)→?. Note that H ′ is also a skeleton history. Let H ′′ be some
linearization of H ′, and let v be the value ret(Q, τH(H ′′)). Therefore, H · rspp(op)→ v

is IVL, where H1 = H2 = H ′′.

3.3.3 Extending IVL for randomized algorithms

For the remainder of this paper, consider algorithms in which the number of steps
taken in an operation is independent of the coin flips. We say that these algorithms
have uniform step complexity. For example, an operation that returns the value of a
coin flip is uniform – the number of steps taken is independent of the coin flips. If
coin flips are used for control, the algorithm may require padding shorter execution
paths with dummy operations. Note that every sequential algorithm that terminates
within a bounded number of steps may be converted to have uniform step complexity.
Such an algorithm can then be parallelized using locks or in a lock-free manner; the
number of steps in a concurrent execution of the resulting concurrent algorithm might
be unbounded under certain schedules, but remains independent of the coin flips. The
main point of choosing uniform step complexity is that coin flips have no impact on
operations’ execution times.
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In a randomized algorithm A with uniform step complexity, every invocation of a
given operation returns after the same number of steps, regardless of the coin flip vector
#»c . This, in turn, implies that for a given σ, for any #»c , #»c ′ ∈ Ω∞, the arising histories
H(A, #»c , σ) and H(A, #»c ′, σ) differ only in the operations’ return values but not in the
order of invocations and responses, as the latter is determined by σ, so their skeletons
are equal. For randomized algorithm A and schedule σ, we denote this arising skeleton
history by H?(A, σ).

We are faced with a dilemma when defining the specification of a randomized algo-
rithm A, as the algorithm itself is a distribution over a set of algorithms {A( #»c )} #»c ∈Ω∞ .
Without knowing the observed coin flip vector #»c , the execution behaves unpredictably.
We therefore define a deterministic sequential specification H( #»c ) for each coin flip vec-
tor #»c ∈ Ω∞, so the sequential specification is a probability distribution on a set of
sequential histories {H( #»c )} #»c ∈Ω∞ .

A correctness criterion for randomized objects needs to capture the property that
the distribution of a randomized algorithm’s outcomes matches the distribution of be-
haviors allowed by the specification. Consider, e.g., some sequential skeleton history H

of an object defined by {H( #»c )} #»c ∈Ω∞ . Let Q be a query that returns in H, and assume
that Q has some probability p to return a value v in τH( #»c )(H) for a randomly sampled
#»c . Intuitively, we would expect that if a randomized algorithm A “implements” the
specification {H( #»c )} #»c ∈Ω∞ , then Q has a similar probability to return v in sequential
executions of A with the same history, and to some extent also in concurrent executions
of A of which H is a linearization. In other words, we would like the distribution of
outcomes of A to match the distribution of outcomes in {H( #»c )} #»c ∈Ω∞ . For example,
consider a sequential specification that allows returns 0 with probability 0.5, and 1 with
probability 0.5. For an algorithm to implement such an object, it is not enough for it
to return only 0 or 1, but we expect 0 to be returned with probability 0.5, and 1 to be
returned with probability 0.5.

We observe that in order to achieve this, it does not suffice to require that each
history has an arbitrary linearization as we did for deterministic objects, because this
might not preserve the desired distribution as is shown in [53]. Instead, for randomized
objects we require a common linearization for each skeleton history that will hold true
under all possible coin flip vectors. In other words, the linearization is independent of
the coin flip vector. We therefore formally define IVL for randomized objects as follows:

Definition 3.3.4 (IVL for randomized algorithms). Consider a skeleton history H =
H?(A, σ) of some randomized algorithm A with schedule σ. H is IVL with respect
to {H( #»c )} #»c ∈Ω∞ if there exist linearizations H1, H2 of H such that for every coin flip
vector #»c and query Q that returns in H,

ret(Q, τH( #»c )(H1)) ≤ ret(Q, H(A, #»c , σ)) ≤ ret(Q, τH( #»c )(H2)).

Algorithm A is an IVL implementation of a sequential specification distribution
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{H( #»c )} #»c ∈Ω∞ if every skeleton history of a well-formed execution of A is IVL with
respect to {H( #»c )} #»c ∈Ω∞ .

Since we require a common linearization of the skeleton histories under all coin
flips vectors, the linearizations are a foriori independent of future coin flips. Hence, an
adversary cannot affect the linearization based on observing the coin flip vector.

3.3.4 r-relaxed IVL

Henzinger et al. define r-relaxed semantics [59]. Intuitively, each operation on the
relaxed object is assigned a cost. An r-relaxation allows operations whose costs do not
exceed r. Rinberg et al. [99] define the cost of some operation o to be the number
of operations that precede it in the concurrent history, but do not precede it in the
sequential one. Paraphrasing the definition of the r-relaxed specification for some
sequential specification H from Rinberg et al. [99]:

Definition 3.3.5 (r-relaxation). A sequential history H is an r-relaxation of a sequen-
tial history H ′ if H is comprised of all the invocations in H ′ and their responses, and
each invocation in H is preceded by all but at most r of the invocations that precede
the same invocation in H ′. The r-relaxation of H is the set of histories that have
r-relaxations in H:
Hr ≜ {H ′|∃H ∈H s.t. H is an r-relaxation of H ′}.

We can plug Definition 3.3.5 into Definition 3.3.4 instead of the sequential spec-
ification there to get a specification for r-relaxed IVL objects. For completeness, we
define r-relaxed IVL:

Definition 3.3.6 (r-Relaxed IVL). Consider a skeleton history H = H?(A, σ) of
some randomized algorithm A with schedule σ. H is r-relaxed IVL with respect to
{Hr( #»c )} #»c ∈Ω∞ if there exist linearizations H1, H2 of H such that for every coin flip
vector #»c and query Q that returns in H,

ret(Q, τHr( #»c )(H1)) ≤ ret(Q, H(A, #»c , σ)) ≤ ret(Q, τHr( #»c )(H2)).

Algorithm A is an r-relaxed IVL implementation of a sequential specification dis-
tribution {H( #»c )} #»c ∈Ω∞ if every skeleton history of a well-formed execution of A is IVL
with respect to {Hr( #»c )} #»c ∈Ω∞ .

As Definition 3.3.6 is IVL with respect to an r-relaxed specification, it is both
local and non-blocking. In Section 3.5.2, we show that this allows us to create more
NUMA-friendly objects.

3.3.5 Relationship to other relaxations

In spirit, IVL resembles the regularity correctness condition for single-writer regis-
ters [78], where a query must return either a value written by a concurrent write or the
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last value written by a write that completed before the query began. Stylianopoulos
et al. [111] adopt a similar condition for data sketches, which they informally describe
as follows: “a query takes into account all completed insert operations and possibly
a subset of the overlapping ones.” If the object’s estimated quantity (return value)
is monotonically increasing throughout every execution, then IVL essentially captures
this condition, while also allowing intermediate steps of a single update to be observed.
But this is not the case in general. Consider, for example, an object supporting in-
crement and decrement, and a query that occurs concurrently with an increment and
an ensuing decrement. If the query takes only the decrement into account (and not
the increment), it returns a value that is smaller than all legal return values that may
be returned in linearizations, which violates IVL. Our interval-based formalization is
instrumental to ensuring that a concurrent IVL implementation preserves the proba-
bilistic error bounds of the respective sequential sketch, which we prove in the next
section.

Another example of an object specified in the spirit of IVL is Lamport’s monotonic
clock [77], where a read is required to return a value bounded between the clock’s values
at the beginning and end of the read’s interval.

Previous work on set-linearizability [92] and interval-linearizability [24] has also re-
laxed linearizability, allowing a larger set of return values in the presence of overlapping
operations. The set of possible return values, however, must be specified in advance by
a given state machine; operations’ effects on one another must be predefined. In fact,
interval-linearizability could be used to define IVL on a per-object basis, by defining
a nondeterministic interval-sequential object in which a read operation can return any
value in the interval defined by the update operations that are concurrent with it. In
contrast, when considering quantitative objects, IVL is generic and does not require
additional object-specific definitions; it provides an intuitive quantitative bound on
possible return values.

Henzinger et al. [59] define the quantitative relaxation framework, which allows ex-
ecutions to differ from the sequential specification up to a bounded cost function. We
use this framework when defining relaxed IVL. Alistarh et al. expand upon this and
define distributional linearizability [6], which requires a distribution over the internal
states of the object for its error analysis. Rinberg et al. consider strongly linearizable
r-relaxed semantics for randomized objects [99]. IVL differs from these definitions in
two points: First, a sequential history of an IVL object must adhere to the sequential
specification, whereas in these relaxations even a sequential history may diverge from
the specification. The second is that these relaxations are measured with respect to a
single linearization. We, instead, bound the return value between two legal lineariza-
tions. The latter is the key to preserving the error bounds of sequential objects, as we
next show.
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3.4 (ϵ, δ)-bounded objects

In this section we show that for a large class of randomized objects, IVL concurrent
implementations preserve the error bounds of the respective sequential ones. More
specifically, we focus on randomized objects like data sketches, which estimate some
quantity (or quantities) with probabilistic guarantees. Sketches generally support two
operations: update(a), which processes element a, and query(arg), which returns the
quantity estimated by the sketch as a function of the previously processed elements.
Sequential sketch algorithms typically have probabilistic error bounds. For example,
the Quantiles sketch estimates the rank of a given element in a stream within ±ϵn of
the true rank, with probability at least 1 − δ [4], where n is the number of completed
update operations that precede the query.

We consider in this section a general class of (ϵ, δ)-bounded objects capturing PAC
algorithms. A bounded object’s behavior is defined relative to a deterministic sequential
specification I, which uniquely defines the ideal return value for every query in a
sequential execution. In an (ϵ, δ)-bounded I object, each query returns the ideal return
value within an error of at most ϵ with probability at least 1 − δ. More specifically,
it over-estimates (and similarly under-estimates) the ideal quantity by at most ϵ with
probability at least 1− δ

2 . Formally:

Definition 3.4.1. A sequential randomized algorithm A implements an (ϵ, δ)-bounded
I object if for every query Q returning in an execution of A with any schedule σ and
a randomly sampled coin flip vector #»c ∈ Ω∞,

ret(Q, H(A, σ, #»c )) ≥ ret(Q, τI(H?(A, σ))− ϵ with probability at least 1− δ

2
,

and

ret(Q, H(A, σ, #»c )) ≤ ret(Q, τI(H?(A, σ)) + ϵ with probability at least 1− δ

2
.

A induces a sequential specification {A( #»c )} #»c ∈Ω∞ of an (ϵ, δ)-bounded I object, by
defining the return values of all operations in a given history under a give coin flip
vector.

We next discuss concurrent implementations of this specification.
To this end, we must specify a correctness criterion on the object’s concurrent exe-

cutions. As previously stated, the standard notion is (strong) linearizability, stipulating
that we can “collapse” each operation in the concurrent schedule to a single point in
time. Intuitively, this means that every query returns a value that could have been re-
turned by the randomized algorithm at some point during its execution interval. So the
query returns an (ϵ, δ) approximation of the ideal value at that particular point. But
this point is arbitrarily chosen, meaning that the query may return an ϵ approximation
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of any value that the ideal object takes during the query’s execution. We therefore look
at the minimum and maximum values that the ideal object may take during a query’s
interval, and bound the error relative to these values.

We first define these minimum and maximum values as follows: For a history H,
denote by L(H?) the set of linearizations of H?. For a query Q that returns in H and
an ideal specification I, we define:

vI
min(H, Q) ≜ min{ret(Q, τI(L) | L ∈ L(H?)}); vI

max(H, Q) ≜ max{ret(Q, τI(L) | L ∈ L(H?))}.

Note that even if H is infinite and has infinitely many linearizations, because Q returns
in H, it appears in each linearization by the end of its execution interval, and therefore
Q can return a finite number of different values in these linearizations, and so the
minimum and maximum are well-defined. Correctness of concurrent (ϵ, δ)-bounded
objects is then formally defined as follows:

Definition 3.4.2. A concurrent randomized algorithm A implements an (ϵ, δ)-bounded
I object if for every query Q returning in an execution of A with any schedule σ and
a randomly sampled coin flip vector #»c ∈ Ω∞,

ret(Q, H(A, σ, #»c )) ≥ vI
min(H(A, σ, #»c ), Q)− ϵ with probability at least 1− δ

2
,

and

ret(Q, H(A, σ, #»c )) ≤ vI
max(H(A, σ, #»c ), Q) + ϵ with probability at least 1− δ

2
.

For simplicity, the definition above uses a common ϵ for all queries. While in some
algorithms, ϵ depends on the stream size, i.e., the number of updates preceding a
query, to avoid cumbersome notations we use a single variable ϵ, which should be set
to the maximum value that the sketch’s ϵ bound takes during the query’s execution
interval. Since the query returns, its execution interval is necessarily bounded, and so
ϵ is bounded.

The following theorem shows that IVL implementations allow us to leverage the
“legacy” analysis of a sequential object’s error bounds.

Theorem 3.2. If A implements an (ϵ, δ)-bounded I object (Definition 3.4.1), and A′ is
an IVL implementation of A (Definition 3.3.4), then A′ implements a concurrent (ϵ, δ)-
bounded I object (Definition 3.4.2). Consider a sequential specification {A( #»c )} #»c ∈Ω∞

of an (ϵ, δ)-bounded I object (Definition 3.4.1). Let A′ be an IVL implementation
of A (Definition 3.3.4). Then A′ implements a concurrent (ϵ, δ)-bounded I object
(Definition 3.4.2).

Proof. Consider a skeleton history H = H?(A′, σ) of A′ with some schedule σ, and
a query Q that returns in H. As A′ is an IVL implementation of A, there exist
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linearizations H1 and H2 of H, such that for every #»c ∈ Ω∞, ret(Q, τA( #»c )(H1)) ≤
ret(Q, H(A, σ, #»c )) ≤ ret(Q, τA( #»c )(H2)). As A implements a sequential (ϵ, δ)-bounded
I object, ret(Q, τA( #»c )(Hi) is bounded as follows:

ret(Q, τA( #»c )(H1)) ≥ ret(Q, τI(H1))− ϵ with probability at least 1− δ

2
,

and

ret(Q, τA( #»c )(H2)) ≤ ret(Q, τI(H2)) + ϵ with probability at least 1− δ

2
.

Furthermore, by definition of vmin and vmax:

ret(Q, τI(H1)) ≥ vI
min(H(A′, σ, #»c ), Q); ret(Q, τA( #»c )(H2)) ≤ vI

max(H(A′, σ, #»c ), Q).

Therefore, with probability at least 1− δ
2 , ret(Q, H(A′, σ, #»c )) ≥ vI

min(H(A′, σ, #»c ), Q)−
ϵ and with probability at least 1 − δ

2 , ret(Q, H(A′, σ, #»c )) ≤ vI
max(H(A′, σ, #»c ), Q) + ϵ,

as needed.

While easy to prove, Theorem 3.2 shows that IVL is in some sense the “natu-
ral” correctness property for (ϵ, δ)-bounded objects; it shows that IVL is a sufficient
criterion for keeping the error bounded. It is less restrictive – and as we show be-
low, sometimes cheaper to implement – than linearizability, and yet strong enough to
preserve the salient properties of sequential executions of (ϵ, δ)-bounded objects. As
noted in Section 3.3.5, previously suggested relaxations do not inherently guarantee
that error bounds are preserved. For example, regular-like semantics, where a query
“sees” some subset of the concurrent updates [111], satisfy IVL (and hence bound the
error) for monotonic objects albeit not for general ones. Indeed, if object values can
both increase and decrease, the results returned under such regular-like semantics can
arbitrarily diverge from possible sequential ones.

The importance of Theorem 3.2 is that it allows us to leverage the vast literature on
sequential (ϵ, δ)-bounded objects [89, 48, 25, 82, 31, 4] in concurrent implementations.
We illustrate this in Section 3.3.4 below via the example of an IVL parallelization of a
popular data sketch. By Theorem 3.2, it preserves the original sketch’s error bounds.

3.5 IVL Examples

In this section we present four examples of IVL objects: a simple – and cheap – batched
counter in Section 3.5.1, an r-relaxed (ϵ, δ)-bounded CountMin sketch in Section 3.5.2,
a non-atomic iterator in Section 3.5.3, and a priority queue in Section 3.5.4.
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3.5.1 Shared batched counter

We now show an example where IVL is inherently less costly than linearizability. We
implement an IVL batched counter, and show that its update operation has step
complexity O(1). The algorithm uses single-writer-multi-reader (SWMR) registers,
which are registers which only a single process can write to but all the processes can
read from. In Section 3.6, we prove that all linearizable implementations of a batched
counter using SWMR registers incur step complexity Ω(n) for the update operation.
This is in contrast with standard (non-batched) counters, which can be implemented
with a constant update time. Intuitively, the difference is that in a standard counter,
all intermediate values “occur” in an execution (provided that return values are all
integers and increments all add one), and so all values allowed by IVL are also allowed
by linearizability.

A batched counter object supports the operations update(v) where v ≥ 0, and
read(). Note that the counter’s value is monotonic, as it supports only positive incre-
ments. The sequential specification for this object is simple: a read operation returns
the sum of all values passed to update operations that precede it, and 0 if no update
operations were invoked. The update operation returns nothing. When the object is
shared, we denote an invocation of update by process i as updatei. We denote the
sequential specification of the batched counter by H.

Algorithm 4 Algorithm for process pi, implementing an IVL batched counter.
1: shared array v[1 . . . n] initialized to [0, 0, . . . , 0]
2: procedure updatei(v)
3: v[i]← v[i] + v

4: procedure read
5: sum ← 0
6: for i : 1 ≤ i ≤ n do
7: sum ← sum + v[i]
8: return sum

Algorithm 4 presents an IVL implementation of a batched counter with n processes
using an array v of n SWMR registers. The implementation is a trivial parallelization:
an update operation increments the process’s local register while a read scans all

Figure 3.1: A possible concurrent history of the IVL batched counter: p1 and p2 update
their local registers, while p3 reads. p3 returns an intermediate value between the
counter’s state when it starts, which is 0, and the counter’s state when it completes,
which is 10. In H1, the read operation before all concurrent update operations, and
in H2 it is ordered after all concurrent ones. Its return value is bounded between those
in H1, where it returns 0, and H2, where it returns 10.
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registers and returns their sum. This implementation is not linearizable because the
reader does not take an atomic snapshot of v[1 . . . n]. Thus, it may see a later update
and miss an earlier one, as illustrated in Figure 3.1. First, note that the following
observation follows from the pseudo-code of Algorithm 4: We now prove the following
lemma:

Lemma 3.5.1. Algorithm 4 is an IVL implementation of a batched counter.

Proof. Let H be a well-formed history of a schedule σ of Algorithm 4, and let α be
its execution. We first complete H be adding appropriate responses to all update
operations that updated v (executed Line 3), and removing all other pending update
and read operations. We denote this completed history as H ′.

Let H1 be a linearization of H ′? given by ordering update operations by their
return steps, and ordering read operations after all preceding operations in H ′? and
before concurrent update operations. read operations assigned to the same point
are ordered by their invoke steps. Let H2 be a linearization of H ′? given by ordering
update operations by their invocations, and ordering read operations operations after
all operations that precede them in H ′? and after concurrent update operations. read
operations assigned to the same point are ordered by their invoke steps. Let αi for
i = 1, 2 be a sequential execution of a batched counter with history τH(Hi).

By construction, H1 and H2 are linearizations of H ′? (as they adhere to real-time
order). Let R be some read operation that completes in H. Let vα[1 . . . n] be the
array as read by R in α, vα1 [1 . . . n] as read by R in α1 and vα2 [1 . . . n] as read by
R in α2. To show that ret(R, τH(H1)) ≤ ret(R, H) ≤ ret(R, τH(H2)), we show that
v1[j] ≤ v[j] ≤ v2[j] for every index 1 ≤ j ≤ n.

For any index j, v[j] is incremented with non-negative values. By the construction
of H1, all update operations that update v[j] that precede R in H also precede it in
H1. Therefore, vα1 [j] ≤ vα[j]. By the construction of H2, all update operations that
update v[j] that precede R in H also precede it in H2. Furthermore, in H2 all concurrent
operations that have updated v[j] also precede R. As these are all concurrent update
operations that update v[j], vα[j] ≤ vα2 [j].

As all entries in the array are non-negative, it follows that∑n
j=1 vα1 [j] ≤

∑n
j=1 vα[j] ≤∑n

j=1 vα2 [j], and therefore ret(R, τH(H1)) ≤ ret(R, H) ≤ ret(R, τH(H2)).

This algorithm can efficiently implement a distributed or NUMA-friendly counter,
as processes only access their local registers for updaing values thereby lowering the
cost of incrementing the counter.Such an implementation is highly efficient when update
operations are much more frequent than read operations. This is of great importance,
as memory latencies are often the main bottleneck in shared object emulations [84]. As
there are no waits in either update or read, it follows that the algorithm is wait-free.
Furthermore, the read step complexity is O(n), and the update step complexity is
O(1). Thus, we have shown the following theorem:
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Theorem 3.3. There exists a bounded wait-free IVL implementation of a batched
counter using only SWMR registers, such that the step complexity of update is O(1)
and the step complexity of read is O(n).

3.5.2 Relaxed shared CountMin sketch

In this Section we present a relaxed CountMin sketch. Section 3.5.2 presents a con-
current IVL implementation, and shows that this implementation isn’t linearizable.
Section 3.5.2 presents the r-relaxed IVL CM sketch.

IVL CountMin sketch

Cormode et al. propose the CountMin (CM) sketch [31], which estimates the frequency
of an item a, denoted fa, in a data stream, where the data stream is over some alphabet
Σ. The CM sketch supports two operations: update(a), which updates the object
based on a ∈ Σ, and query(a), which returns an estimate on the number of update(a)
calls that preceded the query. The number of update operations that precede a query
is called the stream length, generally denoted by N .

The sequential algorithm’s underlying data structure is a matrix c of w×d counters,
for some parameters w, d determined according to the desired error and probability
bounds. The sketch uses d hash functions hi : Σ 7→ [1, w], for 1 ≤ i ≤ d. The
hash functions are generated using the random coin flip vector #»c , and have certain
mathematical properties whose details are not essential for understanding this paper.
The algorithm’s input (i.e., the schedule) is generated by a so-called weak adversary,
namely, the input is independent of the randomly drawn hash functions.

The CountMin sketch, denoted CM( #»c ), is illustrated in Figure 3.2, and its pseudo-
code is given in Algorithm 5. On update(a), the sketch increments counters c[i][hi(a)]
for every 1 ≤ i ≤ d. query(a) returns f̂a = min1≤i≤d{c[i][hi(a)]}.

Algorithm 5 CountMin(c⃗) sketch.
1: array c[1 . . . d][1 . . . w] ▷ Initialized to 0
2: hash functions h1, . . . hd ▷ hi : Σ 7→ [1, w], initialized using #»c

3: procedure update(a)
4: for i : 1 ≤ i ≤ d do
5: atomically increment c[i][hi(a)]
6: procedure query(a)
7: min←∞
8: for i : 1 ≤ i ≤ d do
9: c← c[i][hi(a)]

10: if min > c then min← c

11: return min

Cormode et al. show that, for desired bounds δ and α, given appropriate values of
w and d, with probability at least 1−δ, the estimate of a query returning f̂a is bounded
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Figure 3.2: An example CountMin sketch, of size w × d, where h1(a) = 6, h2(a) = 4
and hd(a) = w.2

by fa ≤ f̂a ≤ fa + αN , where N is the number of elements in the stream and fa is the
ideal value. Thus, for ϵ = αN , CM is a sequential (ϵ, δ)-bounded object. Its sequential
specification distribution is {CM( #»c )} #»c ∈Ω∞ .

Proving an error bound for an efficient parallel implementation of the CM sketch
is not trivial. Any linearizable implementation, and even an r-relaxed linearizable,
such as that of Rinberg et al. [99], requires the query to take an atomic snapshot of the
matrix [94], which we forgo in Algorithm 5. Distributional linearizability [6] necessitates
an analysis of the error bounds directly in the concurrent setting, without leveraging
the sketch’s existing analysis for the sequential setting.

Instead, we utilize IVL to leverage the sequential analysis for a parallelization that
is not strongly linearizable (or indeed linearizable), without using a snapshot. Con-
sider the straightforward parallelization of the CM sketch, whereby the operations of
Algorithm 5 may be invoked concurrently and each counter is atomically incremented
(e.g., using a FAA atomic operation [68]) on line 5 and read on line 9. We call this
parallelization PCM . We next prove that it is IVL.

Lemma 3.5.2. PCM is an IVL implementation of CM .

Proof. Let H be a history of an execution σ of PCM . Let H1 be a linearization of H?

such that every query is linearized prior to every concurrent update, and let H2 be a
linearization of H? such that every query is linearized after every concurrent update.
Let σi for i = 1, 2 be a sequential execution of CM with history Hi. Consider some
Q =query(a) that returns in H, and let U1, . . . , Uk be the concurrent updates to Q.

Denote by cσ(Q)[i] the value read by Q from c[i][hi(a)] in line 9 of Algorithm 5 in
an execution σ. As processes only increment counters, for every 1 ≤ i ≤ d, cσ(Q)[i] is
at least cσ1(Q)[i] (the value when the query starts) and at most cσ2(Q)[i] (the value
when all updates concurrent to the query complete). Therefore, cσ1(Q)[i] ≤ cσ(Q)[i] ≤
cσ2(Q)[i].

Consider a randomly sampled coin flip vector #»c ∈ Ω∞. Let j be the loop index
the last time query Q alters the value of its local variable min (line 10), i.e., the index
of the minimum read value. As a query in a history of CM( #»c ) returns the minimum

2Source: https://stackoverflow.com/questions/6811351/explaining-the-count-sketch-algorithm,
with alterations.

75

https://stackoverflow.com/questions/6811351/explaining-the-count-sketch-algorithm


value in the array, ret(Q, τCM( #»c )(H1)) ≤ cσ1(Q)[j]. Furthermore, ret(Q, τCM( #»c )(H2))
is at least cσ(Q)[j], otherwise Q would have read this value and returned it instead.
Therefore:

ret(Q, τCM( #»c ))(H1)) ≤ ret(Q, H(PCM, σ, #»c )) ≤ ret(Q, τCM( #»c )(H2))

As needed.

Combining Lemma 3.5.2 and Theorem 3.2, and by utilizing the sequential error
analysis from [31], we have shown the following corollary:

Corollary 3.4. Consider a concurrent history H of PCM with parameters (ϵ, δ), with
a stream of length N . Let f̂a be a return value from query Q with parameter a in H.
Let f start

a be the ideal frequency of element a at the invocation of Q, and let fend
a be the

ideal frequency of element a at the response of Q. Then:

f start
a ≤ f̂a ≤ fend

a + ϵ with probability at least 1− δ.

Proof. Let CM be a sequential (ϵ, δ)-bounded object. Lemma 3.5.2 proves that PCM

is an IVL implementation of CM , therefore, by Theorem 3.2, PCM implements a
concurrent (ϵ, δ)-bounded object.

Consider some concurrent history H containing N update operations, and consider
some query Q of element a that returns in H. Let Hstart be the prefix of H up to the
invocation of Q, where all pending operations are removed. Let f start

a be the number
of update operations in Hstart with parameter a. As each update operation increments
the counters Q reads, and they all precede Q, then f start

a ≤ vI
min(H, Q).

Let Hend be the prefix of H up to the response of Q, where all pending operations
are completed.Let f end

a be the number of update operations in Hend with parameter a.
As each update operation increments the counters Q reads, then f end

a ≥ vI
min(H, Q).

Therefore:
f start

a − ϵ ≤ f̂a ≤ f end
a + ϵ with probability at least 1− δ.

This can be further improved by noting that the Q returns at least f start
a , as it

cannot read the counters with values less than f start
a . Therefore:

f start
a ≤ f̂a ≤ f end

a + ϵ with probability at least 1− δ.

The following example demonstrates that PCM is not a linearizable implementation
of CM .

Example 3.5.3. Consider the following execution σ of PCM : Assume that #»c is such
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that h1(a) = h2(a) = 1, h1(b) = 2 and h2(b) = 1. Assume that initially

c =
2
1 4

3
.

First, process p invokes U =update(a) which increments c[1][1] to 2 and stalls. Then,
process q invokes Q1 =query(a) which reads c[1][1] and c[2][1] and returns 2, followed
by Q2 =query(b) which reads c[1][2] and c[2][1] and returns 2. Finally, process p

increments c[2][1] to be 3.
Assume by contradiction that H is a linearization of σ, and H ∈ CM( #»c ). The

return values imply that U ≺H Q1 and Q2 ≺H U . As H is a linearization, it maintains
the partial order of operations in σ, therefore Q1 ≺H Q2. A contradiction.

Relaxed IVL CM sketch

Using the r-relaxed IVL form, we can create a buffered CM sketch by using a similar
framework to Rinberg et al. [99]. The update operations are buffered locally by updat-
ing threads until a certain threshold is reached. The resulting matrix is then merged
into the shared CM sketch, which is updated element by element.

This buffered approach allows for far better memory locality. Rather than every
update operating on shared memory, most operations are local. This leads to better
cache utilization, and forgoes expensive NUMA memory accesses.

In Rinberg et al., a query takes a strongly linearizable snapshot of the current
global state, and applies the query to it. In a CM sketch, a linearizable snapshot is an
expensive operation – it requires an atomic snapshot. Using an IVL query forgoes the
need for a strongly linearizable snapshot, while retaining error bounds.

The buffered IVL CM sketch is r-relaxed IVL with respect toHCM , where r = 2Wb,
where W is the number of worker threads and b is the local buffer size (i.e., the number
of updates processed between propagations).

The error analysis follows from the relaxation and the definition of IVL. Consider
some query Q on a that returns v, and let Sstart and Send be the state of the system
at the start and end of Q’s execution, respectively. Let vstart be the number of times
a appears in the stream before Sstart, let vend be the number of times a appears in the
stream before Send, and let N end be the length of the stream at Send.

vstart − r ≤ v ≤ vend + ϵN end.

3.5.3 Non-atomic iterators

While until now we focused on numerical objects, the idea behind IVL can be expanded
to include other types of objects as well. For example, iterators in map and set data
structures (like skiplists and search trees) typically return a non-atomic scan of the set
of keys – or items – in the data structure [12, 86]. We show that the semantics of such
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scan operations are naturally captured using IVL. Consider a data structure supporting
three operations, (1) insert, (2) delete, and (3) scan. The sequential specification
HMAP is straightforward, a scan returns all elements that were inserted before it and
were not deleted before it.

The concurrent semantics are typically defined as follows [12, 86]:

Definition 3.5.4 (Non-atomic Scan operation semantics). Consider a scan operation,
returning some set S. Let K be the elements that have been inserted prior to the
scan’s invocation and have not been deleted before the scan. Let I be the elements
being inserted concurrently to the scan, and let D be the set of elements that are
removed concurrently to the scan. Then K \D ⊆ S ⊆ K ∪ I.

This definition resembles IVL with the partial order of set containment. However,
IVL also adheres to program order. So if a thread adds element a, then removes it,
then adds element b, an IVL scan result cannot contain both a and b, which is allowed
by Definition 3.5.4.

We can, nevertheless, use IVL to capture the correctness semantics of such non-
atomic iterators as specified by Definition 3.5.4. To this end, we add an auxiliary
history variable both at the concrete level (the data structure is augmented to track its
removals in an auxiliary history variable holding tombstones) and at the abstract level
(the scan in the augmented sequential specification returns a set including tombstones).
The algorithm augmented with the auxiliary variable is an IVL implementation of the
augmented sequential specification. The insert(a) operation inserts a into the auxiliary
variable. The delete(a) operation inserts a tombstone for a, denoted −a, into the
auxiliary variable. The concrete return value is defined via a function f that returns
the set of elements that are included and do not have tombstones in the auxiliary
variable, e.g., f({a,−a, b}) = {b}.

Formally, let V be the set of all possible elements, and denote the possible tomb-
stones as V− = {−v|v ∈ V}. The auxiliary variable is some S ∈ 2V∪V− . We define
f : 2V∪V− 7→ 2V as: f(S) = {v|v ∈ S ∧ −v /∈ S}.

Given the sequential specification HMAP defined above, denote HT −MAP as the
augmented object. The sequential specification of a scan operation is also straight-
forward: a scan returns a set in 2V∪V− consisting of all elements that were inserted
before it, and tombstones for all elements deleted before it.

We prove that IVL semantics with the auxiliary variable is equivalent to Defini-
tion 3.5.4:

Lemma 3.5.5. Consider a history H of a concurrent object implementing HMAP and
some scan of it returning a set of items S ∈ 2V . Denote by HT −MAP the object
augmented with the auxiliary history variable tracking tombstones. Then ∃S′ ∈ 2V∪V−

such that returning H is IVL with respect to HT −MAP and f(S′) = S.

Proof. Let H be a history of some concurrent object implementing HMAP , and let S
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be the result of some non-atomic scan operation in H. Let K,I, and D be as defined
by Definition 3.5.4.

S satisfies Definition 3.5.4, as the object implements HMAP . We show that ∃S′

such that S′ is IVL with respect to HT −MAP and f(S′) = S.
Let H1 be a linearization of H? where the scan is linearized before all concurrent

operations, and let H2 be a linearization of H? where the scan is linearized after all
concurrent operations. Let S′

i ∈ 2V∪V− be the return value of the scan in τH(Hi), for
i = 1, 2. Let K ′ be the set of all insertions and deletions before the scan in H1, then,
by construction, S′

1 = K ′ and S′
2 = K ′ ∪ I ∪D−. Note that f(K ′) = K.

We construct S′ as S′
1∪ I ′∪D′− as follows: I ′ = S∩ I, and D′ = D \S. I.e., I ′ is all

inserted elements that are observed by S, and D′ are all deleted elements not observed
by S – meaning elements that are deleted concurrently to the scan and not observed
by it. By construction

S′
1 ⊆ S′ = S′

1 ∪ I ′ ∪D′− ⊆ S′
1 ∪ I ∪D− = S′

2,

so returning S′ is IVL with respect to HT −MAP .
Furthermore, by construction, S′ = K ′∪ (S∩ I)∪ (D \S)−, so f(S′) = K ∪ (S∩ I)\

(D\S). By Definition 3.5.4 K\D ⊆ S ⊆ K∪I, we get that K\(D\S) ⊆ S ⊆ K∪(I∩S),
and f(S′) = S, as needed.

We believe that instead of giving a long definition of the SCAN operation as is
currently done [12, 86], IVL captures the semantics of such operations accurately and
succinctly.

3.5.4 Sequentially consistent IVL priority queue

We next show that for more complex (non-numeric) objects, IVL can be used in con-
juction with additional properties. Consider the example of a Priority Queue (PQ),
which supports two operations, insert and deleteMin [42, 101]. The sequential PQ
holds a set of priority-element pairs. An insert(e, p) adds element e with priority p to
the set, and a deleteMin returns and removes the element with the lowest priority
from the set.

The set of pairs is partially ordered by priority, with ties broken by the elements
themselves. Thus, we can use IVL to define the PQ’s concurrent semantics. How-
ever, IVL alone allows the PQ to return elements that were never inserted, as shown
in Figure 3.3a. In the example, thread p1 inserts (e1, 8) to the PQ and thread p2 in-
serts (e2, 3). Concurrently to the insertions, thread q removes an item from the PQ.
IVL allows q to return (ex, 6), as (e2, 3) ≤ (ex, 6) ≤ (e2, 8), even though (ex, 6) may
be an element that was never inserted to the PQ. Thus, an IVL PQ is meaningless.
Fortunately, we can address this by requiring an additional property along with IVL.

To disallow such spurious elements, we require that the PQ also be sequentially
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consistent (SC) [105]. We note that SC and IVL are incomparable: IVL requires that
sequential executions adhere to the sequential specification, whereas SC only requires
program order. For example, Figure 3.3b shows an SC PQ that isn’t IVL, and, as noted
above, Figure 3.3a shows an IVL PQ that isn’t SC.

(a) IVL PQ that isn’t SC – (ex, 7) is re-
turned even though it was never inserted.

(b) SC PQ that isn’t IVL – IVL adheres to real-time
order, therefore (e2, 3) must be returned.

Figure 3.3: Possible histories of a priority queue under IVL only (3.3a) and SC only
(3.3b).

Combining the IVL and SC properties yields a PQ that must return elements pre-
viously inserted to the PQ and not yet deleted (by SC), yet the deleteMin operation
may return elements disallowed under linearizability. For example, Figure 3.4 presents
a history of an IVL and SC PQ. In the example, thread p1 inserts (e1, 8) to the PQ,
p2 then inserts (e2, 3), and then p1 inserts (e3, 5). Concurrently to the insertions, p3

removes an element from the PQ. The SC property requires that the element be (e1, 8),
(e2, 3) or (e3, 5), and the IVL property requires that the element have priority at most
8, and at least 3. For example, the element (e3, 5) can be returned, which is disallowed
under linearizability.

An IVL priority queue is useful when the necessary guarantee is that the popped
element is one of the top elements, but not necessarily the top one, e.g., parallel graph
processing [54], or belief propagation [5].

3.6 Lower bound for linearizable batched counter

The incentive for using an IVL batched counter instead of a linearizable one stems from
a lower bound on the step-complexity of a wait-free linearizable batched counter imple-
mentation from SWMR registers. To show the lower bound we first define the binary
snapshot object. A snapshot object has n components written by separate processes,
and allows a reader to capture the shared variable states of all n processes instanta-
neously. We consider the binary snapshot object, in which each state component may
be either 0 or 1 [63]. The object supports the updatei(v) and scan operations, where

Figure 3.4: A possible concurrent history of a PQ that is both IVL and SC but not
linearizable. The SC property requires that the remove be of some previously inserted
element, and the IVL property requires that the element have a priority bound between
8 and 3.
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the former sets the state of component i to value v ∈ {0, 1} and the latter returns
all processes states instantaneously. It is trivial that the scan operation must read
all states, therefore its lower bound step complexity is Ω(n). Israeli and Shriazi [70]
show that the update step complexity of any implementation of a snapshot object
from SWMR registers is also Ω(n). This lower bound was shown to hold also for multi
writer registers [16]. While their proof was originally given for a multi value snapshot
object, it holds in the binary case as well [63].

Algorithm 6 Algorithm for process pi, solving binary snapshot with a batched counter
object.

1: local variable vi ▷ Initialized to 0
2: shared batched counter object BC ▷ Initialized to 0

3: procedure updatei(v)
4: if vi = v then return
5: vi ← v
6: if v = 1 then BC .updatei(2i)
7: if v = 0 then BC .updatei(2n − 2i)
8: procedure scan
9: sum ← BC .read()

10: v[0 . . . n− 1]← [0 . . . 0] ▷ Initialize an array of 0’s
11: for i : 0 ≤ i ≤ n− 1 do
12: if bit i is set in sum then v[i]← 1
13: return v[0 . . . n− 1]

To show a lower bound on the update operation of wait-free linearizable batched
counters, we show a reduction from a binary snapshot to a batched counter in Algo-
rithm 6. It uses a local variable vi and a shared batched counter object. In a nutshell,
the idea is to encode the value of the ith component of the binary snapshot using the ith

least significant bit of the counter. When the component changes from 0 to 1, updatei

adds 2i, and when it changes from 1 to 0, updatei adds 2n − 2i. We now prove the
following invariant:

Invariant 4. For any prefix H ′ of H of length t of a sequential execution of Algorithm 6,
the sum held by the counter is c · 2n +

∑n−1
i=0 vi2i, such that vi is the parameter passed

to the last invocation of updatei in H ′ if such invocation exists, and 0 otherwise, for
some integer c ∈ N.

Proof. We prove the invariant by induction on the length of H, i.e., the number of
invocations in H, denoted t. As H is a sequential history, each invocation is followed
by a response. The base if for t = 0, i.e., H is the empty execution. In this case no
updates have been invoked, therefore vi = 0 for all 0 ≤ i ≤ n − 1. The sum returned
by the counter is 0. Choosing c = 0 satisfies the invariant. Our induction hypothesis is
that the invariant holds for a history of length t. We prove that it holds for a history
of length t + 1. The last invocation can be either a scan, or an update(v) by some
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process pi. If it is a scan, then the counter value doesn’t change and the invariant holds.
Otherwise, it is an update(v). Here, we note two cases. Let vi be pi’s value prior to
the update(v) invocation. If v = vi, then the update returns without altering the sum
and the invariant holds. Otherwise, v ̸= vi. We analyze two cases, v = 1 and v = 0. If
v = 1, then vi = 0. The sum after the update is c·2n+

∑n−1
i=0 vi2i+2i = c·2n+

∑n−1
i=0 v′

i2i,
where v′

j = vj if j ̸= i, and v′
i = 1, and the invariant holds. If v = 0, then vi = 1. The

sum after the update is c · 2n +
∑n−1

i=0 vi2i + 2n − 2i = (c + 1) · 2n +
∑n−1

i=0 v′
i2i, where

v′
j = vj if j ̸= i, and v′

i = 1, and the invariant holds.

Using the invariant, we prove the following lemma:

Lemma 3.6.1. For any sequential history H, if a scan returns vi, and updatei(v)
is the last update invocation in H prior to the scan, then vi = v. If no such update
exists, then vi = 0.

Proof. Let S be a scan in H ′. Consider the sum sum as read by scan S. From
Invariant 4, the value held by the counter is c · 2n +

∑n−1
i=0 vi2i. There are two cases,

either there is an update invocation prior to S, or there isn’t. If there isn’t, then by
Invariant 4 the corresponding vi = 0. The process sees bit i = 0, and will return 0.
Therefore, the lemma holds.

Otherwise, there is a an update prior to S in H. As the sum is equal to c · 2n +∑n−1
i=0 vi2i, by Invariant 4, bit i is equal to 1 iff the parameter passed to the last

invocation of update was 1. Therefore, the scan returns the parameter of the last
update and the lemma holds.

Lemma 3.6.2. Algorithm 6 implements a linearizable binary snapshot using a lineariz-
able batched counter.

Proof. Let H be a history of Algorithm 6, and let H ′ be the subset of operations in
H that access the linearizable batched counter (and removed otherwise), where each
operation is linearized at its access to the linearizable batched counter with responses
added to pending operations, or its response if vi = v on line 4. Applying Lemma 3.6.1
to H ′, we get H ′ ∈ H and therefore H is linearizable.

It follows from the algorithm that if the counter object is bounded wait-free then
the scan and update operations are bounded wait-free. Therefore, the lower bound
proved by Israeli and Shriazi [70] holds, and the update must take Ω(n) steps. Other
than the access to the counter in the update operation, it takes O(1) steps. Therefore,
the access to the counter object must take Ω(n) steps. We have proven the following
theorem.

Theorem 3.5. For any linearizable wait-free implementation of a batched counter object
with n processes from SWMR registers, the step-complexity of the update operation is
Ω(n).
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3.7 Conclusion

We have presented IVL, a new correctness criterion that provides flexibility in the return
values of quantitative objects while bounding the error that this may introduce. IVL
has a number of desirable properties: First, like linearizability, it is a local property,
allowing designers to reason about each part of the system separately. Second, also like
linearizability but unlike other relaxations of it, IVL preserves the error bounds of PAC
objects. Third, IVL is generically defined for all quantitative objects, and does not
necessitate object-specific definitions. Finally, IVL is inherently amenable to cheaper
implementations than linearizability in some cases.

Via the example of a CountMin sketch, we have illustrated that IVL provides a
generic way to efficiently parallelize data sketches while leveraging their sequential
error analysis to bound the error in the concurrent implementation.

We have shown that IVL can also capture the semantics of non-atomic snapshots,
by augmenting the data structure with an auxiliary history variable. Finally, we have
shown that sometimes IVL is useful in tandem with other correctness criteria via the
example of a priority queue, where we pair IVL with sequential consistency.

The notion of IVL raises a main question for future research: In this work we have
shown that IVL is a sufficient condition for parallel (ϵ, δ)-bounded objects, in that it
preserves their sequential error. It would be interesting to investigate whether IVL is
also necessary, or whether some weaker condition is sufficient.
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Chapter 4

Quancurrent

One of the performance bottelnecks in the generic solution presented in Chapter 2 is the
merge operation. Every propagation in the Quantiles sketch requires a sort operation.
Furthermore, as the stream size grows, the merger thread may be required to execute
multiple sort operations as part of a single propagation. Therefore, as there is a single
merger thread, long merges leave update threads idle and harm speedup. We now
briefly present Quancurrent, a concurrent quantiles sketch, which is based upon joint
work. We go into more detail in our full paper [41]. We first give a brief overview on
the importance of the Quantiles sketch.

Understanding the data distribution is a fundamental task in data management
and analysis, used in applications such as exploratory data analysis [116], operations
monitoring [1], and more. The Quantiles sketch family captures this task [85, 4, 51,
30]. The sketch represents the quantiles distribution in a stream of elements, such that
for any 0 ≤ ϕ ≤ 1, a query for quantile ϕ returns an estimate of the ⌊nϕ⌋th largest
element in a stream of size n. For example, quantile ϕ = 0.5 is the median. Due to the
importance of quantiles approximation, Quantiles sketches are a part of many analytics
platforms, e.g., Druid [38], Hillview [23], Presto [95], and Spark [110].

The classic literature on sketches has focused on inducing a small error while using
a small memory footprint, in the context of sequential processing: the sketch is built by
a single thread, and queries are served only after sketch construction is complete. Only
recently, we begin to see works leveraging parallel architectures to achieve a higher
ingestion throughput while also enabling queries concurrently with updates [111]. Of
these, the only solution suitable for quantiles that we are aware of is the Fast Concurrent
Data Sketches (FCDS) framework proposed in Chapter 2. However, the scalability of
FCDS-based quantiles sketches is limited unless query freshness is heavily compromised
(as we show below). Our goal is to provide a scalable concurrent Quantiles sketch that
retains a small error bound with reasonable query freshness.

Quancurrent is based on the solution proposed by Agarwal et. al [4] which is used by
Apache DataSketches [11]. Like FCDS, Quancurrent relies on local buffering of stream
elements, which are then propagated in bulk to a shared sketch. But Quancurrent
improves on FCDS by eliminating the latter’s sequential propagation bottleneck, which
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Figure 4.1: Quancurrent’s data structures. Threads ta and tb are in the same NUMA
node and are accessing the Gather&Sort, and threads tx and ty are executing different
propagations.

mostly stems from the need to sort large buffers.

In Quancurrent, sorting occurs at three levels – a small thread-local buffer, an in-
termediate NUMA-node-local buffer called Gather&Sort, and the shared sketch. More-
over, the shared sketch itself is organized in multiple levels, which may be propagated
(and sorted) concurrently by multiple threads.

To allow queries to scale as well, Quancurrent serves them from a cached snapshot
of the shared sketch. This architecture is illustrated in Figure 4.1. The query freshness
depends on the sizes of local and NUMA-local buffers as well as the frequency of caching
queries. We show that using this architecture, high throughput can be achieved with
much smaller buffers (hence much better freshness) than in FCDS.

To lower synchronization overhead, we refrain from synchronizing insertions to the
Gather&Sort with propagations from it, which may lead to buffered elements being
sporadically overwritten by others without being propagated, while others may be
duplicated, i.e., propagated more than once. These occurrences, which we call holes,
alter the stream ingested by the data structure. Yet, we show that for a sufficiently
large local buffer, the expected number of holes is small and, because they are random,
they do not change the sampled distribution. Figure 4.2 presents quantiles estimated
by Quancurrent on a stream of normally distributed random values compared to an
exact, brute-force computation of the quantiles, and shows that the estimation remains
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accurate.

0 0.2 0.4 0.6 0.8 1
0

2M

4M

6M

8M

10M

Quancurrent Exact CDF
Rank

Q
u
a
n
t
i
l
e

Figure 4.2: Quancurrent quantiles vs. exact CDF, k = 1024, normal distribution, 32
update threads, 10M elements.

We achieve an update speedup of 12x and a query speedup of 30x over the sequential
sketch, both with linear speedup, as shown in Figure 4.3. In the full paper [41], we
compare Quancurrent to FCDS, which is the state-of-the-art in concurrent sketches, and
show that for FCDS to achieve similar performance it requires an order of magnitude
larger buffers that Quancurrent, reducing query freshness tenfold.
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Figure 4.3: Quancurrent Speedup.
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Chapter 5

Compressing Distributed
Network Sketches with
Traffic-Aware Summaries

5.1 Introduction

Network designers need to gather analytics about the performance of the network to
better understand what is happening behind the curtain. These are useful for traffic
engineering, for reaching a higher utilization of the infrastructure, for reducing link con-
gestion, and for detecting anomalies when they happen. Switches generally do not have
sufficient memory to hold entire measurement models for large data streams, therefore
the network designer generally sacrifices accuracy for a lower memory footprint. Data
sketching algorithms, or sketches for short [29], are an indispensable tool for such high-
speed low-memory-footprint computations. Sketches estimate some function of a large
stream such as flow sizes [31] (i.e., the number of packets in a flow), stream cardinal-
ity [33, 50] (i.e., the number of flows in a stream), the top-k most common items [88]
or frequency changes [76]. They are supported by many data analytics platforms such
as PowerDrill [61], Druid [39], Hillview [62], and Presto [95] as well as by standalone
toolkits [118].

Measurements are conducted in switches all over the network; however, to success-
fully analyze network behavior, measurement data needs to be gathered in a centralized
server that can see a wider view. A stream of multiple flows passes through the net-
work, with disjoint parts of the stream sampled by multiple ingestion nodes, where
parts of the same flow may be ingested by different nodes. The ingestion nodes peri-
odically propagate their local sketch to a central node, as illustrated in Figure 1.3. The
network has to handle the trade-off of sending data packets vs. sending crucial control
packets with sketch information [124, 20]. A way to reduce these control packets is by
compressing the sketches before transferring them to a central analytics node.

Compressing is crucial as network managers may have many sketches estimating
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different measurements concurrently. While each sketch alone may be insignificant,
their aggregate is noticeable at the network level. Additionally, the sketch may be
collecting measurements in low bandwidth networks [14, 87], making the sketch size
critical.

A framework for sketch compression was suggested by Yang et al. [119]. A major
component of this framework, named Maximum Merging Algorithm (MM), compresses
a Count-Min sketch (CM) by utilizing a max function and merging multiple cells in
one CM to generate a new, smaller sketch. The first limitation of that approach is that
it compresses a sketch only into smaller sketches of particular sizes, those that have
a common divisor with the size of the original sketch. Moreover, the approach does
not provide insights for the selection of the various compression ratios that should be
implied for a distributed measurement in multiple nodes. In particular, how the traffic
distribution among the nodes should be considered.

A clear drawback of compression methods is the accuracy reduction they might
imply. It is often critical for network managers to have access to measurements with
guarantees of their accuracy. In the common case that the network has multiple inges-
tion nodes that generate the measurements and send the data to a centralized server,
it is intuitive to allow each node to report them through an amount of data that is
correlative to the amount of traffic it observes. In this paper, we study distributed
sketch-based network measurement with limited communication. For optimizing accu-
racy we call for traffic-aware compression ratios of the multiple sketch instances. We
present a formal model that refers to any given number of ingestion nodes and any dis-
tribution of the traffic through these nodes. Moreover, the resize factors also guarantee
that the amount of data sent over the network is less than compressing all the data
from all the nodes to the same size with previously presented methods.

We present the following major contributions:
(i) As a building block, we develop a compression method named CM-SKTC for a

single CM that allows general compression ratios, and then present the Traffic-Aware
CM sketch, denoted TA-CM.

(ii) We present Traffic-Aware K-minimum-values (KMV), denoted TA-KMV – a
traffic-aware compression ratio for nodes implementing distributed distinct flow count
with the KMV sketch.

(iii) Finally, we present Traffic-Aware HyperLogLog (HLL), denoted TA-HLL – a
traffic-aware compression ratio for nodes implementing distributed distinct flow count
with the HLL sketch.

The rest of the paper is organized as follows. Section 5.2 discusses preliminaries, our
model, and related work. In Section 5.3 we present the CM-SKTC compression method
for a single CM, bound its error, and describe how to decrease the data sent from
ingestion nodes to the centralized server. The TA-CM for traffic-aware CM compression
for multiple nodes is described in Section 5.4. Section 5.5 presents the TA-KMV for
cardinality estimation (count distinct). Experimental evaluation of the methods is
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provided in Section 5.7. Finally, in Section 5.8 we conclude and suggest directions for
future work.

5.2 Preliminaries

In this section we present the model, as well as background on sketches. Finally, we
detail related work.

5.2.1 Model

We consider the incoming packets in the network as originating from a single stream. A
flow is defined to be a sub-stream with common packet headers, e.g., grouping together
all packets containing the same 5-tuple. A measurement is some function f computed
over the stream, e.g., returning the distinct number of flows in the stream. As streams
are generally too large to maintain in memory [28], accuracy is traded off for a lower
memory footprint [31, 4, 19] by algorithms called sketches. Several sketches have the
mergeability property that refers to the ability for computing a sketch over a stream by
merging sketches over substreams.

As mentioned previously, measurements are conducted in switches all over the net-
work. We model this by splitting the stream into disjoint sub-streams observed by
ingestion nodes, where parts of the same flow may be observed by different ingestion
nodes. Once the nodes have a sketch ready to be sent (e.g., periodically or upon re-
ceive a specific signal) they propagate their local sketch or a summary for it to a central
node [64, 81, 82], which merges all sketches to provide the desired measurement.

5.2.2 Background

In this section, we present the HLL sketch and the Maximum Merging (MM) method.

HyperLogLog for Cardinality Estimation

HyperLogLog (HLL) [49, 61] is another popular algorithm for cardinality estimation.
As a building block, it relies on the Flajolet–Martin method of estimating the number
of distinct elements [50, 40]. They propose computing a hash value h(ai) for each
element ai and a value ρ(h(ai)) that indicates the index of the first non-zero bit upon
considering the binary representation of h(ai), starting from the least significant bit.
The HLL holds an array M of m = 2d counters. For an element ai, a counter is selected
based on the d left-most bits in h(ai) and this counter is potentially updated based on
the next t bits in h(ai). The use of hashing ensures that repeated elements in the
stream imply the same values and thus cannot increase the counter values. Finally, the
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cardinality estimation computed based on the m counters is:

αm ·m2 ·
(m−1∑

j=0
2−M [j])−1

.

αm is approximated as:

αm =



0.673 m = 16

0.697 m = 32

0.706 m = 64
0.723

1+ 1.079
m

m ≥ 128

as shown in [49].

Maximum Merging (MM)

Previous work by Yang et al. has presented the Maximum Merging (MM) [119]
method, a method for compressing CM before transmission over the network. In this
method, the CM sketch is compressed from size w to w′, where w′ is a divisor of w.
Column i is added to column (i mod w′). If w = r · w′, the CM sketch is compressed
by a factor r earlier to its transmission over the network.

While this method maintains the lookup speed of the original CM sketch, a limita-
tion of this method is the requirement that w′ be a divisor of w. Even more important,
in the common scenario of multiple measurements, the MM scheme compresses all
sketches equally regardless of the amount of traffic each of them observes. We in-
dicate that this scheme can lead to under utilized bandwidth. For example, if the
two node processed different portions of the stream, an identical compression implies
over-compression of the sketch that observes more traffic, leading to a higher overall
error.

5.2.3 Related Work

Common sketch solutions focus on the trade-off of speed, accuracy, and memory (e.g., [31,
28, 88, 107, 44, 96, 97, 102] and more). However, they generally consider only a single
node ingesting the entire stream. The introduction of software-defined networks (SDN)
allows for deploying centralized algorithms for maintaining and collecting information
about network operations [120]. These solutions typically have a centralized controlled
merging of incoming data from ingestion nodes. Network-wide measurements have been
widely studied [2, 10, 81, 58]. These solutions, however, do not consider the size of con-
trol packets sent to the controller – they do not take into account that these control
packets may worsen existing congestion [124, 20].

Shrivastava et al.[106] presented time adaptive sketches and discussed the need
for having recent data more accessible. In [57], Harrison et al. presented a network-
wide scheme of detecting heavy-hitters while considering the reporting communication
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overhead. [58] presented a method of heavy-hitters detection that used probabilistic
summary reporting to decrease control packets during DDoS attacks. These two works
emphasize that minimizing summaries size is critical and can have a major influence
on network performance. By using methods of our paper, network operators can create
larger sketches and excess the need for time-reliant sketches.

Recently, [103] suggested methods for accurate flow size estimation in the Count-
Min sketch (CM) without overestimation, that apply when the number of flows of
non-zero size is bounded. Yang et al. presented the Maximum Merging (MM) [119],
a method for compressing CM before transmission over the network. MM allows pro-
viding estimations under a range of traffic characteristics implying various bandwidth
constraints. The main limitation of this method is that it can only compress the CM
to a constant w′ which divides the width w. MM does not deal with two aspects that
we find important for making it practical. It refers to a single sketch and does not
discuss the compression of multiple sketch instances and in particular how to compute
various compression ratios for such sketches based on the traffic. Likewise, it is focused
solely on the CM. In this work, we study the common scenario of multiple distributed
sketches and refer in addition to CM also to other common sketches.

Our methods utilize similar patterns to the original sketches, therefore our proposed
sketches and techniques may have the potential to be implemented on programmable
switches. For example, the following sketches have been implemented using the Tofino
architecture [69]: the CM sketch [91], the Quantiles sketch [93], and more [123, 56,
122].

5.3 The CM-SKTC Compression Method

We present a method that allows compressing any sized CM (d, w) to any new size
possible (d, w′) for w′ ∈ [1, w]. Let h1, . . . , hd be pair-wise independent hash functions
used in original CM, such that every function holds hi : {f1, f2, . . . } 7→ {1, 2, . . . , w},
where fj is flow j. Let g1, ..., gd be pair-wise independent hash functions such that
gi : {1, 2, . . . , w} 7→ {1, 2, . . . , w′} for every i.

The CM-SKTC compression method works as follows. For each array Sc[j] in the
sketch, the value of the l’s cell Sc[j][l] is the maximum value over all cells in the
corresponding array of the original sketch S[j] that by the hash function gj are hashed
to the l’th cell (i.e. Sc[j][l] ← max

i:gj(i)=l
{S[j][i]}). Algorithm 7 presents the CM-SKTC

compression method pseudo code.
An example of the compression process of CM-SKTC is illustrated in Figure 5.1

where a CM-SKTC of size d = 2, w′ = 4 is computed for a CM of size d = 2, w = 6.
Notice that the method reduces the number of columns (rather than that of the rows)
since typically the number of rows is low beforehand, as there is a need for a distinct
hash function per row.

The query method (Algorithm 8) from CM-SKTC is similar to the original CM
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7 72 11 34 24 117

CM CM-SKTC

1 w = 6 1
w′ =
4

Figure 5.1: An example for Count-Min sketch (CM) (left side) compression with CM-
SKTC (right side). In this example, a CM of size d = 2, w = 6 is compressed into a
CM-SKTC of size d = 2, w′ = 4. Values of the hash functions g1, g2 are represented by
various colors. In row i, multiple counters with the same hash value of gi are represented
by their maximum.

query. When flow f estimation value is required, for each array Sc[j] (where j ∈ [1, d])
find the appropriate cell Sc[j][gj (hj(f))] (one in each array) and return their respective
minimal value.

Similar to the original CM and the MM [119], the CM-SKTC method also generates
only overestimation values.

Algorithm 7 CM-SKTC compression algorithm
vars:
h1, . . . hd - hash functions from flows to [1, w]
g1, . . . gd - hash functions from [1, w] to [1, w′]

1: procedure compress(S)
2: Sc ← array of 0’s of size d× w′

3: for j ∈ [1 . . . d] do
4: for i ∈ [1 . . . w] do
5: l← gj(i)
6: Sc[j][l] = max(Sc[j][l], S[j][i])
7: return Sc

Algorithm 8 CM-SKTC estimation query
vars:
h1, . . . hd - hash functions from flows to [1, w]
g1, . . . gd - hash functions from [1, w] to [1, w′]

1: procedure query(Sc, f)
2: est← 0
3: for j ∈ [1 . . . d] do
4: if est > Sc[j][gj (hj(f))] then
5: est← Sc[j][gj (hj(f))]
6: return est

Yang et al. [119] present error bounds for compressing the CM when reducing w to
some divider w′ (i.e., w = z ·w′ for an integer z). The number of counters compressed to
the same counter is fixed as w/w′. Our CM-SKTC, however, maps a variable number
of counters to each counter using hashing. This number can vary among the counters
in an array or among the arrays, thereby adding a taste of randomness. Recall that in
the CM sketch δ (the error probability) is a function of the number of columns and ϵ
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(the error) is a function of the number of rows. Our compression scheme reduces the
number of columns, therefore, intuitively, the probability of estimating the flow size
with error at most ϵ is reduced by some factor. In practice, given a probability δ, the
CM-SKTC is initialized with enough columns so that after compression the probability
of estimating the flow size with at most error ϵ is greater than 1−δ. Given a CM sketch
with d rows, and w columns, and a compression ratio w′/w, Lemma 5.3.1 presents the
guarantees of the compressed sketch.

Lemma 5.3.1. Given a CM S with d rows and w columns, for appropriate parameters
(ϵ, δ′), and a CM-SKTC compression ratio w′

w < 1. Let N be the size of the stream and
denote by f̂i the estimation of flow with size fi. Denote by β the term

(
1−

(
1− 1

ϵw

)(
1− N

w(fi + ϵN)

) w
w′ −1+

√
−2 ln(1−δ) w

w′
)d

.

The estimation f̂ of flow f satisfies f̂ ≤ f + ϵN with probability 1− β − δ′(1− β).

Proof of Lemma 5.3.1. Following the compression, each counter in array j ∈ [1, d]
of Sc is the maximum of all values of counters from S mapped to this counter by the
corresponding function from gj . Since the d arrays in Sc are independent, we begin
by analyzing each array error contribution by itself. For some array, let denote by Xl

the number of cells that mapped to cell l ∈ [1, w′] in Sc. As the hash functions map
the domain {1, 2, . . . , w} uniformly to the range {1, 2, . . . , w′}, Xl is a random variable
drawn from a binomial distribution with p = 1/w′ and n = w. As Xl is binomial,
e ≜ E(Xl) = w

w′ . We now bound the number of rows in the original CM sketch that
map to the rows in the compressed sketch using the Chernoff bound:

Pr
(

Xl > e +
√
−2 ln( d

√
1− δ)e

)
= Pr

(
Xl >

(
1 +

√
−2 ln( d

√
1− δ)/e

)
e

)
Chernoff bound

≤ e−

(√
−2 ln( d√1−δ)/e

)2
r

2 = e− −2 ln( d√1−δ)e
2e

= eln( d√1−δ) = d
√

1− δ.

Let C =
⌈
e +

√
−2 ln(1− d

√
1− δ)e

⌉
. Following the compression, each counter in Sc is

the maximum value of at least C counters from S with probability at most d
√

1− δ.
We bound the error for a flow fi, which is mapped to one counter in S and com-

pressed with at most C − 1 other counters to a new counter with probability at least
1 − d
√

1− δ. Denote by n1, ..., nC the number of packets which do not belong to flow
fi, but are mapped to the C counters mapped to counter S. From the CM sketch,
C(ni) ≤ N

w for every ni. Without loss of generality assume that fi is mapped to n1.
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Conclude that the estimation f̂i is f̂i = max(n1 + fi, n2, ..., nC) and accordingly

Pr(f̂i ≥ fi + ϵN)

= Pr(max(n1 + ai, n2, . . . , nC) ≥ fi + ϵN)

≤ 1− Pr(max(n1 + ai, n2, . . . , nC) < fi + ϵN)

= 1− Pr(n1 + fi < fi + ϵN) ·
C∏

j=2
Pr(nj < fi + ϵN)

= 1− Pr(n1 < ϵN) ·
C∏

j=2
Pr(nj < fi + ϵN)

Markov inequality
≤ 1−

(
1− E(n1)

ϵN

)
·

C∏
j=2

(
1− E(nj)

fi + ϵN

)

≤ 1−
(

1− 1
wϵ

)(
1− N

w(fi + ϵN)

)C−1

As the hash functions are pairwise independent, we can use this bound to bound
the error of f̂i, the estimation of flow fi. By definition f̂i = min(f̂1

i , f̂2
i , . . . , f̂d

i ).

Pr(f̂i ≥ fi + ϵN) = Pr(min(f̂1
i , . . . , f̂d

i ) ≥ fi + ϵN)

≤
d∏

j=1
Pr(f̂ j

i ≥ fi + ϵN)

We have shown that for any j: Pr(f̂ j
i ≥ fi +ϵN) ≤ 1−

(
1− 1

wϵ

) (
1− N

w(fi+ϵN)

)C−1
,

with probability δ′ = d
√

1− δ. Therefore, as the hash functions as pair-wise indepen-
dent, we can conclude that the following holds with probability of d

√
1− δ

d = 1− δ:

Pr(f̂i ≥ fi + ϵN) ≤
d∏

j=1
Pr(f̂ j

i ≥ fi + ϵN)

≤
d∏

j=1
1−

(
1− 1

wϵ

)(
1− N

w(fi + ϵN)

)C−1

=
(

1−
(

1− 1
wϵ

)(
1− N

w(fi + ϵN)

)C−1
)d

= β.

With probability of 1− δ the following holds: Pr(f̂i ≥ fi + ϵN) ≤ β , thus Pr(f̂i ≤
fi + ϵN) ≥ 1 − β with probability at least 1 − δ. Therefore the probability that
f̂i ≤ fi + ϵN is at least (1− δ)(1− β) = 1− β − δ(1− β).

Lemma 5.3.1 shows that compressing a sketch with parameter δ yields a sketch with
parameter β + δ(1− β), where β is as defined in the lemma. It follows that to achieve
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probability δ after compression, we must instantiate the uncompressed sketch with
parameter (δ − β)/(1− β). Denote δ′ = β + δ(1− β). We empirically analyze how the
compression affects the probability. Table 5.1 shows how δ′ is affected by changes in δ,
w′/w, and ϵ respectively. δ′ remains less than 3δ, therefore we initialize the CM sketch
to have the number of columns for 3δ as opposed to δ. As the number of columns is
⌈ln 1/δ⌉, generally, we need to add a single column in order for the error probability
after compression to be less than δ.

5.4 The Traffic-Aware CM

The system measures a stream of data that is split in a distributed fashion across
several ingestion nodes. Upon stream ingestion completion, the nodes communicate
with a centralized server which can then answer queries. This is depicted in Figure 1.3.
Queries are agnostic to the specific architecture, namely, they only refer to the complete
stream as a whole and do not refer to its parts observed by each of the nodes. There is
a clear tradeoff between the summaries size sent to the server and its ability to answer
queries accurately. Accordingly, we would like to optimally use compression to allow
high accuracy. The MM [119] scheme was proposed to reduce summary size through
compression of CMs maintained by the nodes but the fact it can be compressed in only
particular ratios restricts it from taking advantage of all bandwidth to the server.

In network traffic, flow size distribution among switches can be imbalanced [72,
104]. For instance, the location of nodes along paths of various lengths or employment
of particular network functions in the nodes can result in nodes receiving a small portion
of the network stream while others more traffic. We leverage this skew to reduce the
summaries size sent to the server. Specifically, we aim to compress the sketches sent
by ingestion nodes that received a small portion of the overall stream more than those
sketches of nodes with higher portions of traffic. We say that a sketch compression
from w columns to w′ columns has a compression ratio of w′/w. As mentioned, the
number of rows is not reduced.

The design of Traffic-Aware Count-Min Sketch (TA-CM) is as follows: Given pa-
rameters (ϵ, δ), where ϵ is the desired error, δ is the maximum error probability, we
instantiate a CM on every ingestion node with parameters (σ · ϵ, δ) for some 0 < σ ≤ 1.
1
σ is an enlargement factor and is known in advance to the ingestion nodes and the cen-
tralized server. We increase the size of the sketch at the ingestion nodes by 1

σ and as

Table 5.1: Error probabilities after compression, for values of δ, ϵ and the resize factor,
as defined by Lemma 5.3.1.

Resize Factor 0.6 0.9
δ \ ϵ 0.02 0.06 0.02 0.06

0.04 0.0936 0.1177 0.0841 0.0925
0.08 0.1791 0.217 0.1648 0.1808
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such decrease their respective error (as the error is tied to the number of columns). By
enlarging the sketches at the ingestion nodes, we can compress them while maintaining
an error within the desired bounds. When the ingestion period ends, the following
protocol takes place:

(i) Each ingestion node reports to the central node its local stream size.
(ii) The centralized server computes each ingestion node’s compression ratio.
(iii) Every ingestion node compresses its CM with the CM-SKTC method, then

sends its summary to the centralized server.
(iv) The centralized node can query a single flow fj by querying every CM-SKTC

separately and summing up the results to calculate the estimation for flow fj .
To achieve an overall maximum error of ϵ for an arbitrary flow size estimation, the

centralized server can (naively) request a compression ratio of 1/σ. Theorem 5.1 shows
that when there are two ingestion nodes, there are optimal compression ratios that
minimize the total summaries size while maintaining the error bounds of the flow size
estimation in the centralized server to be at most ϵ.

Intuitively, the proof is based on constraints that: (i) the overall error be within
the desired bounds, and (ii) the size of sent traffic be smaller than the naive solution
(i.e., less than 2 · w · d where w · d is the size of a CM with parameters (ϵ, δ)).

Theorem 5.1. For given Count-Min sketch parameters ϵ, δ, initial resize factor σ, and
two CMs S1, S2, with stream sizes of N1, N2 respectively, such that w.l.o.g N1 ≥ N2.
The TA-CM resize factors r1 = k+1

σ(k+
√

k) and r2 = k+1
σ(

√
k+1) for k = N1/N2 generate the

minimal amount of network communication such that the error is bounded by ϵ with
probability at least 1− (β + δ(1− β)).

Proof of Theorem 5.1. Denote by f the flow whose size is being estimated and by f̂

the estimation. Given a CM with parameters (σϵ, δ), after compression by a factor of r,
the following inequality holds with probability at least 1−(β+δ(1−β)), by Lemma 5.3.1:
f ≤ f̂ ≤ f +σϵrN Denote f1, f2 the flow ingested by S1, S2 respectively, and, likewise,
their estimations (after compression) by f̂1, f̂2.

Recall that: f1 ≤ f̂1 ≤ f1 + σϵr1N1, and f1 ≤ f̂2 ≤ f2 + σϵr2N2, where f = f1 + f2.
Therefore, due to the mergeability property, the estimation by the central entity is:

f ≤ f̂1 + f̂2 ≤ f + σϵ(r1N1 + r2N2)

f1 + f2 ≤ f̂1 + f̂2 ≤ f1 + σϵr1N1 + f2 + σϵr2N2

Recall that we would like to maintain an overall error of ϵ, therefore we require that:

σ(r1N1 + r2N2) ≤ N,

and that N1 = kN2. Denote the ratio between r1 and r2 as α = r1/r2. As N1 is larger
than N2, we expect α to be less than 1, as the information retained in S2 will have less
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of an impact than S1:

N1 + N2 = N ⇒ N2 = N

k + 1
σ(r1N1 + r2N2) = σ(αkr2N2 + r2N2) ≤ N

r2 ≤
k + 1

σ(αk + 1)

To reduce the total summaries size as much as possible, the ratios r1 and r2 should
be as large as possible:

r2 = k + 1
σ(αk + 1)

(5.1)

The goal is to reduce the total summaries size in comparison to trivial resizing by
a factor of 1/σ. We require:

1
r1

+ 1
r2
≤ 2 · 1

1/σ
= 2σ (5.2)

To achieve minimum summaries size, we minimize the left-hand size of Equation (5.2).
Recall that r1 = αr2 for some α ∈ (0,∞).

min
α∈(0,∞)

{ 1
r1

+ 1
r2

}
= min

α∈(0,∞)

{ 1
αr2

+ 1
r2

}
=

min
α∈(0,∞)

{1 + α

αr2

}
(i)= min

α∈(0,∞)

{
σ(αk + 1) 1 + α

α(k + 1)

}
(ii)=

min
α∈(0,∞)

{
αk + 1

α

}

Where (i) is from Equation (5.1) and (ii) is by removing constants not affected by α.
The minimum is for α = 1/

√
k, implying α < 1 for k > 1, as expected. Finally, our

last constraint is that merging the sketches by factors other than 1/σ should provide
smaller summaries size:

1
r1

+ 1
r2

= σ(αk + 1) 1 + α

α(k + 1)
α=1/

√
k= σ

(
√

k + 1)2

k + 1
.

The theorem shows that, as the imbalance in ingested stream parts between the
nodes (k) increases, sketch S2 is compressed to a higher degree. Furthermore, at the
extreme case (i.e., k =∞), S1 is compressed by a factor of 1/σ, whereas S2 is compressed
by a factor of ∞. At this extremity, S2 contains no information, thus this compression
is intuitive. Furthermore, when k = 1 both sketches are compressed by a ratio of 1/σ,
which is also intuitive.

We now generalize Theorem 5.1 to the practical case of an arbitrary number of n
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nodes. We again maintain error bounds within certain limits. We first prove a helpful
lemma:

Lemma 5.4.1. For n ≥ 2 the variables 1 ≤ y1, .., yn satisfy(
1+

n∑
i=1

n∏
j=i

√
yj

)2

(
1+

n∑
i=1

n∏
j=i

yj

) ≤ n + 1.

Proof of Lemma 5.4.1. Let y1, . . . , yn be as required. Denote:

xi ≜
n∏

j=i

yj .

Note that, as 1 ≤ y1 . . . yn, then 1 ≤ xi for all i.
As (

1 +
n∑

i=1

√
xi

)2

= 1 +
n∑

i=1
xi +

n∑
i=1

2
√

xi +
∑
i ̸=j

√
xixj ,

then (
1 +

n∑
i=1

√
xi

)2

1 +
n∑

i=1
xi

= 1 +

n∑
i=1

2√xi +
∑
i ̸=j

√
xixj

1 +
n∑

i=1
xi

so we need to prove that
n∑

i=1
2√xi +

∑
i ̸=j

√
xixj

1 +
n∑

i=1
xi

≤ n

Using the arithmetic-mean–geometric-mean inequality:

∑
i ̸=j

√
xixj ≤

∑
i ̸=j

xi + xj

2
=

n∑
i=1

(n− 1)xi.

The divisor disappears as we double count every xi: once on the left hand of the + and
once on the right hand. Furthermore, for any xi ≥ 1:

2
√

xi + (n− 1)xi ≤ 1 + n · xi.

Putting these together we get:

n∑
i=1

2
√

xi +
∑
i ̸=j

√
xixj ≤

n∑
i=1

2
√

xi +
n∑

i=1
(n− 1)xi =

n∑
i=1

(2
√

xi + (n− 1) xi) ≤
n∑

i=1
(1 + n · xi) = n + n

n∑
i=1

xi
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Finally:
n∑

i=1
2√xi +

∑
i ̸=j

√
xixj

1 +
n∑

i=1
xi

≤
n + n

n∑
i=1

xi

1 +
n∑

i=1
xi

= n

We now use the lemma to prove the following theorem:

Theorem 5.2. Given n ≥ 2 CMs Si, with stream sizes N1 ≥ N2 . . . ≥ Nn. Denote
ki = Ni/Ni+1 for i ∈ [1, n− 1] and kn = 1. The optimal TA-CM resize factors are

∀i ∈ [1, n− 1] : ri = ri+1√
ki

and rn =

n∑
i=1

n∏
j=i

kj

σ(
n∑

i=1

n∏
j=i

√
kj)

.

Proof of Theorem 5.2. The proof follows a similar path as the proof for Theo-
rem 5.1. Denote by fi the size of the stream i observed by Si, and the estimations
by f̂i. Denote by ri the compression ratio of Si. Let δ′ be the probability calculated
for some compression rate r, to be determined. Using the mergeability property, the
estimation by the central entity, with probability at least 1− δ′, is:

f ≤
∑

i

f̂i ≤ f + σϵ
∑

i

riNi

∑
i

fi ≤
∑

i

f̂i ≤
∑

i

(fi + σϵriNi)

Recall that we wish to maintain an overall bound of ϵ, thus:

σϵ
∑

i

riNi ≤ ϵN

Denote ki = Ni
Ni+1

, and αi = ri
ri+1

. Therefore:

σϵrnNn

n∑
i=1

n∏
j=i

αjkj ≤ ϵN

Since N = N1 +N2 + ...+Nn and Ni = Nn ·
n∏

j=i
kj , similar to the proof for Theorem 5.1,

observe that

rn ≤

 n∑
i=1

n∏
j=i

kj

 /

σ ·
n∑

i=1

n∏
j=i

αjkj

 .

We maximize rn to minimize summaries size. We choose minimal such αi values by
finding the minimum of minαi

{∑n
i=1

1
ri

}
.
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Following the proof for Theorem 5.1 we use αi = 1√
ki

brings the summaries size to
less than the trivial compression 1. Therefore, we reduce the size if the following holds:

1 +
n−1∑
i=1

n−1∏
j=i

√
kj

2

/

1 +
n−1∑
i=1

n−1∏
j=i

kj

 ≤ (n− 1) + 1

By Lemma 5.4.1 this expression is true for all ratios ki ≥ 1 and the resize factors are
given by:

rn =

 n∑
i=1

n∏
j=i

kj

 /

σ ·
n∑

i=1

n∏
j=i

√
kj

 ,

implying ri = ri+1√
ki

. Finally, using rn to calculate δ′ (i.e., taking the lowest probability),
we have proven our theorem.

Theorem 5.2 shows that sketches that have ingested a larger portion of the overall
traffic are compressed less. This is similar to the case of 2 nodes, as nodes that have
ingested less traffic have a smaller impact on the query. Note that if all nodes ingest
an equal part of the stream, i.e., ki = 1 for all i, then the compression ratio is 1/σ as
expected.

5.5 The Traffic-Aware KMV for Cardinality Estimation

We now present Traffic-Aware KMV (TA-KMV ), a method to compress the KMV
sketch [52, 19], a known tool for computing the number of distinct flows in a stream, also
known as its cardinality. For the case of a single node KMV works as follows: For every
flow f1, f2, . . . it generates hash values h1, h2, . . . and it retains the k smallest values
- {h′

1, h′
2, . . . , h′

k}. The cardinality estimation the sketch calculates is k
max

i∈[1,k]
{h′

i}
. Errors

can include overestimations or underestimations of the cardinality and the relative
standard error is 1√

k
.

Also for this sketch we refer to the scenario presented in Figure 1.3, with nodes
sending summaries to a centralized server through a channel with bounded bandwidth.
As a simple baseline solution, every node can compute the hash values for all the flows
it observes and send the k minimal values among them to the centralized node. This
results in a total number of n · k values sent over the network. Then, the central node
simply orders all the n · k values it receives for computing the value which is the k-th
smallest in its size among them, denoted as h′

k. It estimates the cardinality of the
complete stream as k

h′
k
. Note that although not all observed values were shared by the

various nodes, the value of h′
k necessarily equals the k-th smallest hash value among

all the values for the complete stream.
We aim to develop solution that reduces the total number of values that are sent

for better utilizing the available bandwidth.
1We also conjecture that it is a local minima.
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Our proposal for this distributed sketch is as follows: Given parameter k, we instan-
tiate KMV sketch on the ingestion nodes with parameter k ln k. When the ingestion
ends, the following communication takes place:

(i) Ingestion nodes report their cardinality estimation size to the centralized server.
(ii) The central server computes for each ingestion node i its compression ratio ni.
(iii) Each ingestion node sends its ni minimal values to the centralized server.
We suggest a heuristic of calculating compression ratios ni. We are unable to provide

closed form error bounds for this heuristic. Instead, in Section 5.7, we show that this
method performs well in realistic scenarios.

The goal is for the centralized server to receive some group of k flow hashes such
that the group has as large overlap as possible with the group of global k minimal flow
hashes. The method works as follows: Let ei be the cardinality estimation of server
i. First, each ingestion node i sends ei to the central server, and receives the total
estimation

n∑
j=1

ej in return. Each ingestion node i can then compute the estimation

ratio ri = ei
n∑

j=1
ej

and sends a summary of size si = ri · k ln k. In this case the total

summaries size is:
n∑

i=1
si =

n∑
i=1

ri · k ln k = k ln k
n∑

i=1

ei
n∑

j=1
ej

= k ln k,

and accordingly the total size of sent data is k ln k + 2n.
The reason we deliberately suggest sending more then k values is that multiple

ingestion nodes may observe traffic from the same flow, and hash values may repeat in
the values sent to the centralized node. In such cases among the centralized node will
not receive sufficient distinct hash values to achieve the necessary error bounds.

We suggest sending O(k ln k) hash values, as we observe a similarity between the
TA-KMV and the coupon collector problem [45, 22]. In the TA-KMV the minimal k

hash values correspond with coupons, and the goal of the centralized node is to gather
these k values in order to achieve a result with an error that is similar to a single node
processing the whole stream. While we have no closed-form bounds, the evaluation
shows that this method performs well in practice. Note that the coupon collector
problem assumes each coupon is drawn independently, which is not the case in our
scenario. E.g., the smallest hash may come from a very large stream that appears in
every node – in this case, the smallest hash in each node is not independent.

5.6 The Traffic-Aware HLL for Cardinality Estimation

Consider the network-wide measurement framework as illustrated in Figure 1.3 with a
channel of limited bandwidth between the nodes to the centralized server and queries on
the complete network stream. There can be some overlap between the traffic observed
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by different nodes thus the number of distinct flows in the stream is not necessarily
given by the sum of the distinct flows in each of the nodes 1, . . . , n.

To estimate the cardinality of the complete stream a HLL can be used. Assume
the HLL sketches by each node make use of arrays M1, . . . Mn of the same size m,
using the same set of hash functions. Following its update mechanism as detailed
in Section 5.2.2, values of the array M for the complete stream can be computed
simply as M [j] = maxi∈[1,n] Mi[j]. Accordingly, the HLL array can be computed by
the centralized node when each node periodically reports all its array values, allowing
the centralized node to estimate the number of distinct elements in the complete stream
based on M as αm·m2·

(∑m−1
j=0 2−M [j])−1. Such an approach is communication intensive.

Communication can be saved by reducing the size of the reports sent by the nodes.
As M [j] is set to be the maximal among the values M1[j], . . . , Mn[j], the value M [j]
can be computed correctly also when all values besides the maximum are not reported.
This motivates a compression scheme in which a node reports an array value based
on the probability of the value to be the maximal of the corresponding values (over
the nodes) with the same array index. Consider a node i with its jth counter value
c = Mi[j] ≥ 0. Denote Ni as the number of flows observed by node i, and denote
N =

∑n
i=1 Ni. In the following lemma we bound from below the probability of the

counter j in ingestion node i, to be the maximal among corresponding counters in all
the network ingestion nodes.

Lemma 5.6.1. Let the value of Mi[j] be some c ≥ 0. The probability that c is the
maximal among M1[j], . . . , Mn[j] is at least (1− 1

m · 2
−(c−1))N−Ni.

Proof. Let c be the value of counter Mi[j] for some node i. Consider some flow a

observed by some other node k. As the hash function is uniform, it is mapped to
counter j with probability 1/m. By the uniformity of h, with probability 1 − 2−(c−1):
ρ(h(a)) ≤ c. As there are at most N −Ni flows observed by all other nodes (as there
may be overlap), and as the hash function is pairwise independent, Mi[j] is maximal
with probability at least (1− 1

m · 2
−(c−1))N−Ni .

As expected, it can be concluded from the bound in Lemma 5.6.1 that as c increases,
the probability that the value c is the maximal value among all ingestion nodes increases
as well. Note that the values N1, N2, . . . , Ni−1, Ni+1, . . . , Nn might not be known to
node i. They can be approximated through a (relatively simple) communication process
with the central server such that each node declares its estimation and the central server
declares the sum of them all. Without such iteration with the central server, a node
can simply report a subset that refers to its largest values. Computing the subset size
should consider the number of ingestion nodes.

Consider a family of compression schemes by which each node simply reports a
subset of its values. Intuitively, the probability pc should serve as an input to the
decision whether to report the value c. We now detail several potential traffic-aware
approaches that can be designed.
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(i) (Random Sampling) Select a probability p, fixed for the n nodes based on the
limitation of the channel to the centralized server. Each node reports each of its counters
w.p. p.

(ii) (Weighted Sampling) A counter value c is reported w.p. pc or w.p. derived as
an increasing function of pc.

(iii) (Largest Values) Each node can report its β ·m largest counters, where β ≤ 1
is a small constant. Here, each node reports a similar amount of counters.

(iv) (Threshold) Each node reports all its counters with values of at least a threshold
cT , ignoring small values. The same value cT applies for all nodes. Hence, the number
of values reported by nodes varies based on the values in Mi for a node i. To compute
a value cT that implies reporting some percentage β of the total n · m values, the
complete set of n ·m values in the n arrays are required. Reporting all such values to
the centralized server increases communication costs.

The central server collects the reported values and computes M based on the max-
imal collected value in each array index j ∈ [1, m]. If for some index, no values were
reported they can be set as 0 or as another default value.

5.7 Evaluation

In this section, we evaluate the error bounds of the TA-CM, TA-KMV, and TA-HLL
compression methods. For our tests, we use two traces. First, the CAIDA Anonymized
Internet Trace 2018 [114], which is a trace collected from the “equinix-nyc” monitor.
We also use the MAWILab (MAWI) dataset [100], which contains items for evaluating
traffic anomaly detection methods. We implement our algorithms in Python – the
source code has been open-sourced [109].

As shown in Section 5.4, the TA-CM sketch has closed-form mathematical guaran-
tees. To this end, we use only the CAIDA dataset to show the error in practice; the
analyzed error will hold for any stream. The TA-KMV and TA-HLL sketches have a
heuristic approach. We, therefore, use both the CAIDA and the MAWI datasets to
evaluate them. We divide the first 50M packets in each trace into batches of 1M pack-
ets, resulting in 50 batches per trace. We extract the source-destination pair from every
packet and use the pair as the stream elements. Each unique source-destination pair
is a flow. Every batch of that CAIDA dataset has ∼ 15K flows of varying sizes, while
every batch of the MAWI dataset has ∼ 100K flows. Each data-point is the average
over all batches with each batch being run four times with different hash functions.

The section proceeds as follows: In Section 5.7.1 we analyze the average relative
error of the CM-SKTC induced by the compression, compared to the CM sketch and
MM compression. Then, in Section 5.7.2, we showcase how we can utilize the CM-
SKTC to achieve low error while sending less data over the network for 2 nodes, and
in Section 5.7.3 for n nodes. Finally, in Section 5.7.4 we analyze the TA-KMV, and in
Section 5.7.5 we analyze the TA-HLL.
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5.7.1 Comparing CM-SKTC vs Maximum Merging Algorithm

First, we compare the CM-SKTC to two different compression techniques. (1) No
compression, i.e., a CM sketch with d = 4, as recommended in [9]. We use varying
total memory usage, where each cell is 4 bytes. (2) Maximum Merging (MM) of [119]
with an initial 2 MB CM sketch. The evaluation metric we used is Average Relative
Error (ARE), defined for a set of flows {f1, ..., fn} as 1

n

n∑
i=1

|f̂i−fi|
fi

= 1
n

n∑
i=1

f̂i−fi
fi

where

f̂i is the estimated value of flow fi.
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Figure 5.2: Single node: Compression methods comparison

Figure 5.2 compares the different compression methods for different sketch sizes.
The blue-dashed baseline represents the ARE of the 2 MB CM sketch that both com-
pression methods initiate from. One can observe that CM-SKTC outperforms the two
other methods consistently. Furthermore, as the compression ratio decreases and the
summary size increases, the ARE improves, as expected.
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Figure 5.3: Single node: Compression methods comparison - top 50 flows. The 2MB-
CM, CM-SKTC, and MM lines coalesce.
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Table 5.2: Compression Ratio by k

Compression
Method

Summaries Size Sent
(% from max)

Maximum Merging 2 MB (100%)
TA-CM, k = 1 2 MB (100%)
TA-CM, k = 9 1.6 MB (80%)
TA-CM, k = 49 1.28 MB (64.3%)
TA-CM, k = 100 1.18 MB (59%)

In Figure 5.3 we depict the same comparison as Figure 5.2; however we choose a
larger sample size of flows, and only to the 50 largest flows ARE in each trace are
considered. In this graph, one can observe that the top flows ARE is extremely low for
all methods. Moreover, the MM and CM-SKTC curves are similar, and both have the
same error as the 2MB sketch.

Note that, the MM is more time-efficient than the CM-SKTC compression. This is
due to each hash being calculated twice (for the insertion and for the compression), and
therefore we expect the CM-SKTC to be roughly twice as slow as the MM. Table 5.2
shows that our compression scheme has a lower packet overhead than MM. While MM
may be faster, we can reduce the bandwidth used by the sketch significantly.

From Figures 5.2 and 5.3, we deduce that the CM-SKTC has two important traits:
(1) CM-SKTC achieves estimations within the required error parameters using smaller
summaries, and (2) For large (elephant) flows this error is negligible.

5.7.2 TA-CM with two ingestion nodes (n = 2)

We now simulate two local nodes receiving a data stream of size N , where the relation
between the size of the data stream N1 processed at the first node, and the size of the
data stream N2 at the second node is k = N1

N2
. We evaluate the effect of k on the ARE.

Figure 5.4 depicts the ARE of merging two sketches when sending different sizes
over the network. We compare locally building two sketches with error ϵ, such that they
each have size 1MB (meaning 2MB of data is sent over the network), and building larger
local sketches with error σϵ and compressing them. We compare the trivial compression
by factor 1/σ compared to using our optimal resize factors, for

√
k = 3, 7, 10. Note that

our comparison shows that the error of resizing using optimal factors falls in between
the error of starting with error ϵ and trivially compressing with error σϵ. Of great
importance is that even in the worst case the error is less than ϵ. Table 5.2 compares
the summaries size across the network. It follows that there is a trade-off between the
accuracy and the summaries size. Figure 5.5 shows the ratio between summaries size
as a function of k, in relation to trivial compression.

In Figure 5.6 we show the results of compressing the same base CM sketch as
in Figure 5.4. However, in this simulation, we compare the results when the total
summaries size is 2MB, i.e., the summaries account for 2MB of network traffic. In
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Figure 5.5: Ratio between summaries size in multiple compression methods

this case, we observe that the TA-CM ARE is better than the MM ARE. TA-CM
outperforms MM as it is traffic-aware and considers the distribution across the nodes
and calculates the ratios accordingly; it helps to send the larger part of the data from
the node that handled the larger chunk of the stream.

5.7.3 TA-CM with n ingestion nodes

To evaluate TA-CM in multiple-ingestion nodes scenarios, we formulate four different
types of distributions for 10 nodes (see Figure 5.7) and compare the TA-CM to MM
and the non-compressed CM sketch. The distributions were chosen such that the ratio
between the largest server ratio to the smallest server ratio is 5 (i.e., N1/N10 = 5).

The CM sketch base size for each of the 10 nodes is 32KB. We compare the ARE with
multiple values of σ (i.e., the ratio by which the ingestion node CM sizes is increased)
and compressing with two methods: (1) TA-CM with ratios computed in Section 5.4 (2)
MM compression with all ratios are 1/σ. As depicted in Figure 5.8, TA-CM achieves
similar results in terms of ARE to the Maximum Merging compression and improves
the results of the basic non-compressed CM. However, it does so while decreasing the
total summaries size. Table 5.3 indicates that the TA-CM saves between 7% to 9% of
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Figure 5.7: n = 10 nodes: Stream size distribution over the nodes

the total summaries size for chosen distributions. This saving ratio can be increased by
choosing other, wider distributions of the stream (for example if the stream distributes
across the ingestion nodes by Pareto distribution then TA-CM potentially saves an
even higher percentage).

Table 5.3: Compression ratio of various distributions

Distribution
Summaries Size
(% from max)

Maximum Merging 320KB (100%)
Constant Dist. 320KB (100%)

Exponential Dist. ∼ 292KB (91.3%)
Linear Dist. ∼ 298KB (93.3%)
Arctan Dist. ∼ 293KB (91.6%)
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5.7.4 TA-KMV with n ingestion nodes

In this section, we evaluate TA-KMV. We use the same method as in the previous
section to generate the input stream. However, for this section, we use only the lin-
ear distribution. We compare our TA-KMV with multiple compression ratios. The
compression ratio is measured by Total Hash-values Sent (THS). To the best of our
knowledge, no compression scheme is available for this sketch, and therefore we com-
pare our method only to the baseline, i.e., each ingestion node sends k hash values to
the centralized server. Our measurement unit is the estimation precision rate to true
cardinality. In this case, the number of hash values that are sent to the centralized
server is n · k, where n is the number of ingestion nodes.
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Figure 5.9: TA-KMV vs baseline for k = 1024.

Figure 5.9 depicts the impact of the number of ingestion nodes on the accuracy rate
of TA-KMV, with the confidence interval. We define the accuracy rate as Estimation

# Flows .
The figure shows that the estimation remains fairly accurate even at 100 nodes. The
CAIDA dataset does not have many flows, therefore the aggregate ends up receiving
multiples of the same hash value, and thus the accuracy begins to drop. For example,

114



10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

% Data Sent
A

rr
ay

R
ec

ov
er

y
R

at
e

Random Sampling
Weighted Sampling
Largest Values
Threshold

Figure 5.10: TA-HLL Array Recovery Rate in CAIDA – 10 ingestion nodes

at 200 nodes the central server receives only 300 different hash values. Contrast this
with MAWI, where, due to the larger number of small flows, the central server receives
all 1024 of the smallest hash values. Consider the case of 50 nodes. The baseline sends
51200 hash values, whereas the compressed version send around 4150 hash values – a
92% decrease for a near negligible decrease in accuracy. This creates a clear trade-off
between the accuracy rate and the total summaries size. We note that sending less
than k ln k hash values in total (e.g., k) greatly reduced the accuracy of the estimation.

5.7.5 TA-HLL with n ingestion nodes

Lastly, we compare the four methods for traffic aware cardinality estimation using
compression of distributed HLL described in Section 5.6. Recall that the methods are:

(i) (Random) Each node reports each of its counters w.p. p.
(ii) (Weighted) Reporting a counter value c w.p. pc.
(iii) (Largest) Each node reports its β ·m largest counters.
(iv) (Threshold) Each node reports all its counters with values of at least a threshold

cT .
We evaluate the results of these four methods with an HLL array with size 128,

using the CAIDA and MAWAI datasets. We evaluate all the four methods through two
metrics for accuracy: The first metric is the centralized node Array Recovery Rate given
as the percentage of cells in the centralized node recovered array that are identical to
the corresponding cells in a HLL sketch that could be computed over all network traffic.
The second evaluated metric is the relative error: For a distributed HLL estimation C,
and real stream cardinality F , the relative error is RE = |F −C|

F . We first consider 10
ingestion nodes (and later vary their number).

Figure 5.10 shows the Array Recovery Rate for the four methods, as a function of
percentage of data sent across the network as part of all ingestion nodes HLL array
sizes. Here, with 10 ingestion nodes and HLL array size of 128, the total size is 1280.
For instance, 20% means sending a total of 256 values to the centralized server. We can
see that methods Weighted sampling (ii) and Threshold (iv) that require an iterative
process with the centralized server achieve higher accuracy.
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Figure 5.11: TA-HLL Relative Error in CAIDA – 10 ingestion nodes

Figure 5.11 presents the relative error of the same scenario, and as one could assume,
the two graphs show coordinated results, i.e., the best method in terms of Array Recov-
ery Rate (Threshold) allows lower Relative Error. Note that computing the particular
threshold values for each node might require a relatively complicated iterative process
with the centralized server with potential tradeoff between the number of iterations
and communication overhead.

In Figures 5.12-5.14, we present the impact of the number of ingestion nodes across
the network on accuracy. We used the same settings as described in previous figures,
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Figure 5.12: TA-HLL Array Recovery Rate in CAIDA – 10% data sent
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Figure 5.13: TA-HLL Relative Error in CAIDA - 10% data sent

116



with only 10% of the data sent to the centralized node and varied the number of
ingestion nodes across the network. Once again the two methods with an iterative
process with the centralized server are more accurate than the other two methods.
Another observation is that as the number of ingestion nodes increases, the performance
improves, that is because the total number of reports that arrive to the centralized node
is increasing and as such, the probability to receive per each cell a value identical to
that computed for the complete traffic is increasing as well.

5.8 Conclusion

In this paper, we presented the problem of merging data from multiple measurement
points to one centralized server, described a distributed traffic-aware sketching scheme,
and applied it to three unique sketches. We presented the CM-SKTC sketch as a
simple, yet efficient method for compressing the CM sketch to any desired size, then
used this method to generate TA-CM, a new scheme for flow-size measurements that
provides high accuracy and decreases the total summaries size sent to the centralized
server by considering the traffic of each node. This method is important in today’s
network design because when the traffic congestion in the network is high the need
to successfully measure the network load is higher. In such situations, the extra load
created by sending the summaries can worsen network congestion.

Moreover, we generalized this approach for cardinality estimation and introduced
new traffic-aware designs of the KMV sketch as well as of the HLL sketch. They both
send fewer values while retaining high accuracy cardinality estimation. Finally, we
analyzed these sketches under multiple network settings and examined the trade-off
between the accuracy and the size of summaries.

Several directions can be the focus in future work. A straightforward extension is
developing compression algorithms for additional kinds of sketches allowing different
measurement tasks (e.g., Quantiles for rank estimation [4]). Likewise, we wish to design
further compression of sketches by leveraging existing generic compression techniques
such as Huffman codes, LZ77 or gzip [65, 125, 36].
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Figure 5.14: TA-HLL Relative Error in MAWI - 10% data sent
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Chapter 6

Distributed Shared State
Relaxed Sketches

In this chapter we present joint work appearing in [121]. We present an algorithm
called Strong Delayed-Writes (SDW), which enables distributed state management, and
which guarantees consistent snapshots and r-relaxed strong linearizability facilitating
implementation of distributed sketches.

The SDW protocol supports stream-order-agnostic mergeable data types like sketches.
Variables of this type support three API functions: (1) update(v) – handling a single
addition of element v, (2) query() – returns a value based on the internal state, and
merge(R′) – merges the state of R′ with that of the current variable. A requirement
of any variable R fitting this model is that the query result depends only on the set of
elements that were ingested before it (either by an update or a merge), and not their
order. We say that a query reflects an update, if the update altered the state before
the query executed.

An execution of an algorithm renders a history H, which is a series of invoke and
response events of the three API functions. In a sequential history each invocation is
immediately followed by its response. The sequential specification H of a variable is its
set of allowed sequential histories.

A linearization of a concurrent execution σ is a history H ∈ H such that after adding
responses to some pending invocations and removing others, H and σ consist of the
same invocations and responses and H preserves the order between non-overlapping
operations [60]. If every concurrent execution has a linearization, we say that the
variable is linearizable. For randomized variables we require a stronger property, called
strong linearizability. The qualifier “strong” means that the linearization points are not
determined post-facto, which is necessary in randomized variables [53].

A relaxed property of a variable is an extension of its sequential specification to
allow for more behaviors. We adopt the notion of r-relaxed strong linearizability from
Chapter 2, brought here for completeness. Intuitively, an r-relaxed variable allows a
query to return a result based on all but at most r updates that happened before it.
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Definition 6.0.1. A sequential history H is an r-relaxation of a sequential history H ′,
if H is comprised of all but at most r of the invocations in H ′ and their responses, and
each invocation in H is preceded by all but at most r of the invocation that precede
the same invocation in H ′. The r-relaxation of H is the set of histories that have
r-relaxations in H, denoted Hr.

Our SDW protocol is presented in Algorithm 9. To prove that Algorithm 9 is
r-relaxed strongly linearizable, we first prove a helper lemma:

Lemma 6.0.2. Consider a history H arising from a concurrent execution of Algo-
rithm 9, and some completed update u ∈ H executed by pi. Let w be the value of win

during u. Update u is reflected by every query q on any pj, in every window w′ ≥ w +2.

Proof. Let H be a history arising from a concurrent execution of Algorithm 9, and let
u ∈ H be some completed update executed by pi. Let w be the value of win during
the update’s execution on pi.

Update u is added to objs[w mod 3] on Line 12. On Line 23, objs[(w + 2) mod 3]
is broadcast to all switches, specifically to some switch pj (as pi retains the update in
the same place that is merges received variables, this holds for j = i).

The next time pj advances on Line 19, it enters window w′ = w + 2. Note that the
variable that was queried in the previous window (w′ − 1) is the same variable that
reflected u. This variable is the one queried in round w′, therefore reflected in round
w′ = w + 2.

We now prove by induction that in round w′′ = w′ + k, u is reflected by a query in
round w′′ on pj . The base is for k = 0, and has been prove.

Assume the hypothesis holds for w′ + l, we prove for w′ + l + 1. In round w′ + l,
u is reflected by obj[(w′ + l + 1) mod 3]. On Line 21, pj merges this variable into
obj[((w′ + l + 1) + 1) mod 3], which is the variable queried in this round.

As this induction is true for all k ≥ 0, it holds for any w′′ ≥ w′, proving the
lemma.

The following corollary follows directly from Lemma 6.0.2:

Corollary 6.1. Let H be a history arising from a concurrent execution of Algorithm 9,
and let q ∈ H be some query completed by pi. Let w be the value of win during its
execution. Query q reflects all updates occurring in any window w′ ≤ w − 2.

Note: A system where linearizability holds for sub histories including a single query
is sometimes called Ordered Sequential Consistency (OSC) [79], this is commonly used
in systems, e.g., ZooKeeper [66].

Finally, we define the operation projection of a history H and a set of operations O

as the same history containing only invocations and responses of operations in O. We
denote this H|O Using these formalisms we can prove the following theorem:
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Theorem 6.2. Consider a history H arising from a concurrent execution of Algo-
rithm 9, and some query q ∈ H. Let U be the set of updates in H. The history of
H|U∪{q} is r-relaxed strongly linearizable.

Proof. Let H be a history arising from a concurrent execution of Algorithm 9, let
q ∈ H be some query by pi, and let U be the set of all updates in H. Denote H|U∪{q}

as H ′. We show that H ′ is r-relaxed strongly linearizable with respect to Hr, for
r = 2NB. To prove this, we show the existing of two mappings, f and g, such that f

maps operations in H ′ to visibility points, and g maps operations in H ′ to linearization
points. Intuitively, visibility points are the time in the execution when an update is
visible to a query, i.e., the query reflects the update. Bounding the number of preceding
but not yet visible updates gives the relaxation.

We show that (1) f(H ′) ∈ H, and (2) g(H ′) is an r relaxation of f(H ′). Together,
this implies the theorem.

The visibility points (f(H ′)) are as follows:

• For the query, its visibility point is its return.

• For an update returning false at time t, its visibility point is t.

• For an update returning true at time t, let w be pi’s value of win at time t. The
visibility point is the first time after t that pi’s value of win is win + 2.

Note that in the latter case, the visibility point is after the update returns, so f

does not preserve real-time order.
The linearization points (g(H ′)) are as follows:

• An update’s linearization point is its return, either true or false.

• A query’s linearization point is its return.

By definition, the linearization points as defined by g(H ′) aren’t decided post-facto –
rather the linearization is a pre-determined point in the execution.

Consider some update u ∈ H ′ executed on some pj that returns true. Let w be pj ’s
value of win during its execution. Let w′ be pi’s value of win during q’s execution. We
show that if w ≤ w′− 2, then q observes u, and if w > w′− 2, then q doesn’t observe u.

From the definition of Algorithm 9, for any wini on pi and winj on pj , |wini −
winj | ≤ 1.

If w = w′− 2, then when pj added u to its local buffers, it did so to obj[w mod 3].
As |wini − winj | ≤ 1, pj advanced at least 1 window from w. When it did so, it sent
obj[w mod 3] to pi. In window w′ − 1, pi merges the update into obj[w′ + 1 mod 3].
In window w′ this same variable is queried, thus q observes u. If w ≤ w′ − 3, then the
update is merged into some index of the variables array, and is copied over until it is
reflected in all 3 of them, and specifically reflected in obj[w′ + 1 mod 3] in window w′.
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If w ≥ w′− 1, then when pj added u into its local buffer it did so to obj[w mod 3].
This update is sent to pi only in window w+1, and therefore isn’t reflected in obj[w′ +1
mod 3] in window w′.

Therefore, q reflects all updates that return true that happened during any window
w ≤ w′−2. As there are at most B updates that return true in any window, q reflects all
but at most 2NB updates that precede it in H. Therefore, g(H ′) is an 2NB-relaxation
of f(H ′).

As the query returns a value based on the updates that happened before it, and
each access to the process local state is down sequentially, q returns a value that reflects
all successful updates that happen before it in f(H ′). Therefore, f(H ′) ∈ H.

Intuitively, every query returns a value reflecting a sub-stream of its preceding and
concurrent updates, consisting of all but at most r successful ones. The upper bound r

on the number of “missing” updates is of vast importance, without it the drift between
one switch and another can grow in an unbounded fashion. For example, consider a
counter distributed among two switches running an eventually synchronous algorithm.
One switch can increment the counter an arbitrarily large number of times, while the
other returns 0 on every query – the promise of eventual synchrony is too weak.
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Algorithm 9 Algorithm running on switch pi.
1: variables
2: win, init 0
3: count, init 0
4: objs, init [obj.init(), obj.init(), obj.init() ]
5: buf, init {}
6: rcvs, init {}
7: acks, init {}

8: procedure update(v)
9: if count == B then ▷ Write variable is full

10: return false
11: else
12: objs[win mod 3].update(v) ▷ Add to the write variable
13: count ← count + 1 return true

14: procedure query(arg)
15: return objs[win + 1 mod 3].query(arg) ▷ Serve query from the read variable

16: procedure check_done
17: if |rcvs| == n && |acks| == n then
18: count ← 0
19: win ← win + 1 ▷ Rotate right
20: o′ ← objs[win mod 3]
21: objs[win + 1 mod 3].merge(o′) ▷ Add the updates from window w
22: objs[win mod 3]← obj.init() ▷ Clear write variable
23: broadcast “(objs[win + 2 mod 3], win)” ▷ Send sync message
24: rcvs ← {i}
25: acks ← {i}
26: for all (o′, w′) in buf do ▷ Handle buffered messages
27: rcvs ← rcvs ∪ {j}
28: objs[win + 2 mod 3].merge(o′)
29: send “ack” to pj

30: buf ← {}

31: on receive “(o′, w′)” from pj : ▷ Sync
32: if w′ > w then ▷ Buffer messages from future windows
33: buf ← buf ∪ {(o′, w′)}
34: else
35: rcvs ← rcvs ∪ {j}
36: objs[win + 2 mod 3].merge(o′) ▷ Merge into sync buffer
37: send “ack” to pj

38: return Check_Done()

39: on receive “ack” from pj :
40: acks ← acks ∪ {j}
41: return Check_Done()
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Chapter 7

Conclusions and Future Work

Concurrent and distributed sketches are a fundemental tool in big data analysis, and
more use-cases are being discovered constantly. In this thesis we have studied both
concurrent and distributed sketches. We have presented both theoretical and practical
work. We first presented a generic framework for parallelizing sketches and serving
queries in real-time; the algorithm is strongly linearizable with regards to relaxed se-
mantics. We discussed the necessity of adaptation for small streams, and how to imple-
ment such an adaptation. We showed the error bounds of two representative sketches,
and implemented and evaluated the solution. We have shown it to be scalable and ac-
curate when instantiated with the KMV sketch, and integrated it into the open-source
Apache DataSketches library. We then identified two performance bottlenecks that
arise in other sketches, namely the Quantiles sketch and the CountMin sketch, and
analyzed them.

The first stemmed from the use of strong linearizabilty. While useful for inheriting
the error analysis from the sequential setting, strong linearizabilty induces rigidity
which may inhibit performance. We proposed IVL, a new correctness criterion relaxing
linearizabilty. We showed that IVL has a number of desirable properties: First, like
linearizability, it is a local property, allowing designers to reason about each part of the
system separately. Second, also like linearizability but unlike other relaxations of it,
IVL preserves the error bounds of PAC objects. Third, IVL is generically defined for all
quantitative objects, and does not necessitate object-specific definitions. Finally, IVL
is inherently amenable to cheaper implementations than linearizability in some cases.

The second performance bottleneck of our framework is due to the sequential merge
operation. Some sketches have a longer merge operation, and it may grow longer as the
stream grows larger. As update threads are blocked until the merger thread propagates
their buffered elements, they are stalled until the merge finishes. We then briefly
presented Quancurrent, a concurrent Quantiles sketch. We designed Quancurrent such
that propagations are executed concurrently, thus providing a more scalable solution.

Finally, we studied sketches in the distributed setting. We presented the problem of
merging data from multiple measurement points to one centralized server, described a
distributed traffic-aware sketching scheme, and applied it to three unique sketches. We
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then analyzed these sketches under multiple network settings and examined the trade-
off between the accuracy and the size of summaries. We have shown an algorithm for
creating a distributed sketch, and presented its correctness proof.

We suggest multiple avenues for future work. Firstly, as shown in Chapter 4,
there are limitations to the framework presented in Chapter 2. Whereas we can use
the framework to parallelize any mergeable sketch, some sketches may benefit from
tailored solutions, as we have shown for the Quantiles and CountMin sketches. It
therefore remains to future work to identify additional sketches that do not fit within
the framework, and parallelize them.

Secondly, we consider concurrent use-cases for Quancurrent. At its essence, given
a stream drawn from a distribution, Quancurrent estimates the distributions CDF.
Kraska et al. show that one can use an estimate for the CDF to construct an index
structure, which they call a learned index [75]. They use machine learning tools to
learn and estimate the CDF. Multiple other works have followed in their footsteps,
enhancing and fine-tuning their structure [37, 74, 80, 46, 55, 113]. However, all these
works still use ML tools to estimate the CDF. We believe that Quantiles sketches, and
specifically Quancurrent, can be used to achieve comparable if not better throughput,
with a lower memory footprint.

Finally, when distributing sketches we did not consider a failure model. In practical
use-cases switches crash and nodes fail. To provide robust solutions for such failure
model, we must design the distribute sketch to withstand such issues. To this end,
we suggest analyzing the effects of crash-failures on the sketch’s error, and the cost of
recovering from a crash.
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צמתים, מספר ידי על במשותף מבוצעת הסקיצה בניית אמת, בזמן בניתוח לתמוך כדי ועוד. DDoS

אותם. שסוכם אחד מרוכז לשרת שלו הסקיצה על לעת מעת ומדווח מהזרם, בחלק צופה אחד כל

מסורתי, באופן שנאסף. הסקיצה של דחוסה גרסה על מדווח צומת כל בתקשורת, עומס למנוע כדי

שכדי מסבירים אנו יחס. באותו דוחסים כלומר שלהם, הסקיצות על סימטרי באופן מדווחים צמתים

שונה באופן שלהם הסקיצה את לדחוס צריכים צמתים המשותפת, המדידה של הדיוק את למקסם

סקיצות לשלוש הגישה את ממחישים אנו צומת. כל ידי על שנצפה התעבורה כמות על בהתבסס

ה-K-מינימום-ערכים סקיצת עבור וכן זרימה גדלי מעריכה אשר (CM), Count-Min-ה סקיצת נפוצות:

מחשבים אנו סקיצה, כל עבור הנבדלים. מספר את מעריכים ששניהם (HLL), HyperLogLog-וה (KMV)

של אחד בסבב נעשה זה כללי, באופן התעבורה. התפלגות על בהתבסס צומת של דחיסה יחסי

מבצעים אנו צומת. כל עבור הדחיסה יחס את לחשב ניתן שלאחריו המרכזי, השרת עם תקשורת

הסקיצות האמיתי, בעולם בתרחישים כי אנליטית בצורה ומראים הסקיצות עבור נרחבות סימולציות

דומים. שגיאה גבולות על שמירה תוך המסורתיים מאלה יותר קטנים סיכומים שולחות שלנו
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תקציר

הנתונים על ולא הנתונים, ייצוג על ניתוחים ביצוע לרוב מצריך גבוהים ובנפחים מהירים נתונים עיבוד

ובנפחים מהירים נתונים חישוביםעיבוד עבור הכרחי לכלי הפכו נתונים סקיצות כך, לשם עצמם.

סקיצות כך, לשם עצמם. הנתונים על ולא הנתונים, ייצוג על ניתוחים ביצוע לרוב מצריך גבוהים

שומרים הם מסיביים. נתונים מערכי פני על גבוהה במהירות חישובים עבור הכרחי לכלי הפכו נתונים

מהי יש, ייחודיים אלמנטים כמה (למשל, עליו שאילתות על ועונים הנתונים זרם של תמציתי סיכום

מדויקות. תשובות ולא קירובים מתן של במחיר מוגבל, בזיכרון שימוש תוך האלמנטים) תדירות

ליצירת מקביליות מאפשרות אינן אך גבוהה, אופטימיזציה עם סקיצות מספקות קיימות ספריות

של היבטים מספר לומדים אנו זו בתזה בנייתן. בזמן שאילתות או מרובים, חוטים באמצעות סקיצות

אלו. מערכות

בזמן עליהם שאילתות ולאפשר ביעילות נתונים סקיצות למקבל גנרית גישה מציגים אנו תחילה

של וברעיון הסמנטיקה בהרפיית שימוש תוך מוסיף. כזו שמיקבול השגיאה הגבלת תוך אמת,

סקיצות של השגיאה את ומנתחים שלנו האלגוריתם נכונות את מוכיחים אנו חזקה, ליניאריזציה

אחת את תרמנו קטנה. השגיאה על שמירה תוך גבוהה מדרגיות משיג שלנו האלגוריתם ספציפיות.

מכילה שלנו האלגוריתם זאת, עם פתוח. בקוד הנתונים סקיצות לספריית שלנו המקבילות הסקיצות

מטפלים. אנו שבהם בקבוק צווארי שני

מקבילים אובייקטים עבור פקטו דה הנכונות קריטריון שנבחר. הנכונות מקריטריון נובע הראשון

עדכון, חופפת קריאה כאשר ליניאריזציה, יכולת תחת אינטואיטיבי, באופן ליניאריזציה. יכולת הוא

למונה תוספת פעולת נבחן לדוגמא, אחריו. או העדכון לפני האובייקט ערך את להחזיר חייבת היא

המונה, של בליניאריזציה ל-10. מ-7 המונה הערך את ומקפיצה חדשים, אירועים שלושה הסופרת

ערך כל טיפוסיים, שימוש שבמקרי לב שמים אנו .10 או 7 להחזיר חייבת זה לעדכון חופפת קריאה

ליניאריזצית מציעים אנו הזו, הנוספת החופש מידת את ללכוד כדי מקובל. גם יהיה ל-10 7 בין ביניים

ערכי החזרת לאפשר כדי הלינאריזציה יכולת את שמרפה חדש נכונות קריטריון (IVL), ביניים ערך

שני בין שמתוחם ערך כל להחזיר לקריאה מאפשר זה גס, באופן למעלה. בדוגמה 8 למשל ביניים,

השגיאה את יורשים סקיצות של IVL שיישומי מראים אנו ליניאריזציה. תחת חוקיים שהם החזרה ערכי

שלנו. הראשון הבקבוק צוואר את לעקוף מאפשר זה שקריטריון מראים גם אנו הסדרתי. מקבילם של

סקיצות, למקבל כללית דרך מספק שהוא מכיוון האלגוריתם. מכלליות נובע השני הבקבוק צוואר

סקיצה Quancurrent, את מציעים אנו כך, לשם ספציפיים. מפתרונות להתייעל עשויות מהסקיצות חלק

כיצד בקצרה ומראים שלנו, באלגוריתם קיים הבקבוק צוואר מדוע מסבירים אנו מקבילית. Quantiles

יותר. יעיל פתרון לספק כדי Quancurrent את מעצבים אנו

התקפות גודש, לזיהוי חשובות רשת מדידות המבוזרת. בסביבה נתונים סקיצות סוקרים אנו לבסוף,
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