
Quancurrent: A ConcurrentQuantiles Sketch
Shaked Elias Zada

Technion
Haifa, Israel

shakeli@alumni.technion.ac.il

Arik Rinberg∗
Technion

Haifa, Israel
arikrinberg@google.com

Idit Keidar
Technion

Haifa, Israel
idish@ee.technion.ac.il

ABSTRACT
Sketches are a family of streaming algorithms widely used in the
world of big data to perform fast, real-time analytics. A popular
sketch type is Quantiles, which estimates the data distribution of
a large input stream. We present Quancurrent, a highly scalable
concurrent Quantiles sketch. Quancurrent’s throughput increases
linearly with the number of available threads, and with 32 threads,
it reaches an update speedup of 12x and a query speedup of 30x
over a sequential sketch. Quancurrent allows queries to occur con-
currently with updates and achieves an order of magnitude better
query freshness than existing scalable solutions.

CCS CONCEPTS
• Theory of computation→ Concurrent algorithms; Sketching
and sampling; Streaming, sublinear and near linear time algorithms.

KEYWORDS
big data; streaming algorithms; sketches; quantiles; real-time anal-
ysis; concurrency

ACM Reference Format:
Shaked Elias Zada, Arik Rinberg, and Idit Keidar. 2023. Quancurrent: A
Concurrent Quantiles Sketch. In Proceedings of the 35th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA ’23), June 17–19, 2023,
Orlando, FL, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3558481.3591074

1 INTRODUCTION
Data sketches, or sketches for short, are indispensable tools for
performing analytics on high-rate, high-volume incoming data
streams [10]. Sketches are designed for stream settings in which
each data item is only processed once. A sketch data structure is
essentially a succinct (sublinear) summary of a data stream that ap-
proximates a specific query (unique element count, quantile values,
etc.).

With the rise of big data, a fundamental task in data manage-
ment and analysis is to describe the distribution of the data. This
is used in applications such as exploratory data analysis [22], op-
eration monitoring [4], and more. Quantile approximation is a

∗This work was completed as a PhD candidate at the Technion.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA ’23, June 17–19, 2023, Orlando, FL, USA.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9545-8/23/06. . . $15.00
https://doi.org/10.1145/3558481.3591074

nonparametric representation, widely used to characterize data
distributions [23, 26].

The Quantiles sketch family captures this task [5, 9, 12, 17]: In
a stream of 𝑛 elements, for any 0 ≤ 𝜙 ≤ 1, a query for quantile
𝜙 returns an estimate of the ⌊𝑛𝜙⌋th largest element. For example,
quantile 𝜙 = 0.5 is the median. Due to the importance of quantiles
approximation, Quantiles sketches are a part of many analytics
platforms, e.g., Druid [11], Hillview [8], Presto [18], and Spark [20].

Our goal in this paper is to build a scalable multi-threaded Quan-
tiles sketch. Specifically, we parallelize the mergeable Quantiles
sketch proposed by Agarwal et al. [5], which is popular e.g., im-
plemented in the Apache DataSketches open-source library [1],
relatively simple, and forms a basis for follow-up works [16, 23].
This sketch is of sublinear-size and provides probably approximately
correct (PAC) estimates, which approximate a quantile within some
error 𝜖𝑛 with a failure probability bounded by some parameter 𝛿 .
Section 2, provides background on the sequential sketch, and Sec-
tion 3 then presents Quancurrent, our highly scalable concurrent
Quantiles sketch.

The vast majority of the literature on sketches considers a sketch
built by a single thread, where queries are served after the sketch
construction is complete. Only recently, we begin to see works lever-
aging parallel architectures to achieve a higher ingestion through-
put while also enabling queries concurrently with updates [19, 21].
Of these, the only solution applicable to quantiles that we are aware
of is the Fast Concurrent Data Sketches (FCDS) framework pro-
posed by Rinberg et al. [19]. FCDS is based on local buffering of
updates by multiple worker threads and a single propagator thread
constantly propagates elements from all local buffers to a shared
global sketch. Queries access the global sketch and return approxi-
mations based on a subset of the stream processed so far, including
all elements that has been propagated into the global sketch. The
freshness the query is governed by the size of the local buffers.

The FCDS paper [19] provides a generic parallel sketch construc-
tion so is applicable also for quantiles. Nevertheless, when FCDS
is used for quantiles, the process of propagation includes a heavy
merge-sort, therefore, by using a single propagator, a sequential
bottleneck is formed. Consequently, large local buffers are required
to offset the heavy sorting and keep the working threads busy dur-
ing propagations resulting low query freshness. The scalability of
FCDS-based Quantiles sketches is thus limited unless large buffers
are used causing query freshness to be heavily compromised (as we
show in Section 5). Note, no FCDS-based Quantiles Sketch imple-
mentation was evaluated in the sketches paper or included as part
of the FCDS contribution to the Apache DataSketches open-source
library [1]. Our goal in this work is to provide a scalable concurrent
Quantiles sketch that retains a small error bound with reasonable
query freshness. We are currently in the process of contributing

https://orcid.org/0000-0002-2135-8840
https://orcid.org/0000-0001-9625-0140
https://orcid.org/0000-0002-6417-1250
https://doi.org/10.1145/3558481.3591074
https://doi.org/10.1145/3558481.3591074
https://doi.org/10.1145/3558481.3591074

SPAA ’23, June 17–19, 2023, Orlando, FL, USA. Shaked Elias Zada, Arik Rinberg, and Idit Keidar

our concurrent Quantiles sketch to the Apache DataSketches open-
source library [1].

Like FCDS, Quancurrent relies on local buffering of stream ele-
ments, which are then propagated in bulk to a shared sketch. But
Quancurrent improves on FCDS by eliminating the latter’s sequen-
tial propagation bottleneck, which mostly stems from the need to
sort large buffers.

In Quancurrent, sorting occurs at three levels – a small thread-
local buffer, an intermediate NUMA-node-local buffer calledGather&Sort,
and the global shared sketch. Moreover, the shared sketch itself is
organized in multiple levels, which may be propagated (and sorted)
concurrently by multiple threads. While the sequential case may
grow logarithmically with the stream size [5], the memory overhead
of Quancurrent depends only on the number of update threads and
on the number of NUMA nodes, and is independent of the stream
size.

To allow queries to scale as well, Quancurrent serves them from a
cached snapshot of the shared sketch. This architecture is illustrated
in Figure 1. The query freshness depends on the sizes of local and
NUMA-local buffers as well as the frequency of caching queries. We
show that using this architecture, high throughput can be achieved
with much smaller buffers (hence much better freshness) than in
FCDS.

The collaborative propagation of data to and from shared buffers
creates a synchronization challenge. In order to reduce synchroniza-
tion overhead, we accommodate occasional data races. Specifically,
we allow buffered elements to be sporadically overwritten by others
without being propagated, and others to be duplicated, i.e., prop-
agated more than once. These occurrences, which we call holes,
may result in correlated sampling. When an element is duplicated,
we sample the same element twice instead of sampling an inde-
pendent element. Note that holes are randomly sampled from the
same distribution as the original stream. Thus, they have no effect
on the sampling mean. Nevertheless, the correlated sampling may
increase the variance and thus affect the accuracy of estimation.
We show in two ways that the error holes introduce is negligible.
First, we empirically show that holes have a marginal effect on
accuracy. Figure 2 presents quantiles estimated by Quancurrent

Batched Update

Sketch

Snapshot

…

Thread Local

NUMA Node

Global

Thread Local
Query Threads Snapshot

Snapshot

Snapshot

Gather
&

Sort

Gather
&

Sort

Update Threads

buf buf

Figure 1: Quancurrent’s data structures.

on a stream of normally distributed random values (depicted as
red circles) compared to an exact, brute-force computation of the
quantiles (green dots). We can see that the estimation is accurate.
Second, in Section 4 we statistically analyze the expected number
of holes under the assumption of a uniform stochastic scheduler [6].
We show that the probability for a hole is negligible.

0 0.2 0.4 0.6 0.8 1
0

2M

4M

6M

8M

10M

Quancurrent Exact CDF
ϕ

ϕ
-
q
u
a
n
t
i
l
e

Figure 2: Quancurrent quantiles vs. exact CDF, k = 1024, nor-
mal distribution, 32 update threads, 10M elements.

In Section 5 we empirically evaluate Quancurrent on a 32-core
system. We observe linear speedup over the sequential sketch of
both queries and updates, peaking at 12x for update-only and 30x
for queries concurrent with updates. We compare Quancurrent to
FCDS, which is the state-of-the-art in concurrent sketches, and
show that for FCDS to achieve similar performance it requires an
order of magnitude larger buffers than Quancurrent, reducing query
freshness tenfold.

In theAppendixwe formally define the systemmodel and present
formal correctness proofs.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. nnnnnnn and Grant No. mmmmmmm.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author and do not neces-
sarily reflect the views of the National Science Foundation.

2 BACKGROUND
2.1 Problem Definition
Given a stream𝐴 = 𝑥1, 𝑥2, . . . , 𝑥𝑛 with 𝑛 elements, the rank of some
𝑥 (not necessarily in 𝐴) is the number of elements smaller than 𝑥
in 𝐴, denoted 𝑅(𝐴, 𝑥). For any 0 ≤ 𝜙 ≤ 1, the 𝜙 quantile of 𝐴 is an
element 𝑥 such that 𝑅(𝐴, 𝑥) = ⌊𝜙𝑛⌋.

A Quantiles sketch’s API is as follows:
• update(𝑥) process stream element 𝑥 ;
• query(𝜙) return an approximation of the 𝜙 quantile in the
stream processed so far.

A PAC Quantiles sketch with parameters 𝜖, 𝛿 returns element 𝑥 for
query(𝜙) after n updates such that 𝑅(𝐴, 𝑥) ∈ [(𝜙 − 𝜖)𝑛, (𝜙 + 𝜖)𝑛],
with probability at least 1 − 𝛿 .

In an 𝑟 -relaxed sketch for some 𝑟 ≥ 0 every query returns an
estimate of the 𝜙 quantile in a subset of the stream processed so far
including all but at most 𝑟 stream elements [15, 19].

Quancurrent: A Concurrent Quantiles Sketch SPAA ’23, June 17–19, 2023, Orlando, FL, USA.

2.2 Sequential Implementation
The Quantiles sketch proposed by Agarwal et al. [5] consists of a
hierarchy of arrays, where each array summarizes a subset of the
overall stream. The sketch is instantiated with a parameter 𝑘 , which
is a function of (𝜖, 𝛿). The first array, denoted level 0, consists of
at most 2𝑘 elements, and every subsequent array, in levels 1, 2, . . . ,
consists of either 0 or 𝑘 elements at any given time.

Stream elements are processed in order of arrival, first entering
level 0, until it consists of 2𝑘 elements. Once this level is full, the
sketch samples the array by sorting it and then selecting either the
odd indices or the even ones with equal probability. The 𝑘 sampled
elements are then propagated to the next level, and the rest are
discarded. If the next level is full, i.e., consists of 𝑘 elements, then
the sketch samples the union of both arrays by performing a merge
sort, and once again retaining either the odd or even indices with
equal probability. This propagation is repeated until an empty level
is reached. Every level that is sampled during the propagation is
emptied. Figure 3 depicts the processing of 4𝑘 elements.

levels[0]

(a)
Initial

levels[1]

levels[2]

2k

k

k

2k

k

k

2k

k

k

2k

k

k

2k

k

k

(b)
2k elements

ingested

(c)
After

propagation

(d)
4k elements

ingested

(e)
After

propagation

empty full

Figure 3: Quantiles sketch structure and propagation.

Each element is associated with a weight, which is the number
of coin flips it has “survived”. An element in an array on level 𝑖
has a weight of 2𝑖 , as it was sampled 𝑖 times. Thus, an element
with a weight of 2𝑖 represents 2𝑖 elements in the processed stream.
For approximating the 𝜙 quantile, we construct a list of tuples,
denoted samples, containing all elements in the sketch and their
associated weights. The list is then sorted by the elements’ values.
Denote by𝑊 (𝑥𝑖) the sum of weights up to element 𝑥𝑖 in the sorted
list. The estimation of the 𝜙 quantile is an element 𝑥 𝑗 , such that
𝑊 (𝑥 𝑗) ≤ ⌊𝜙𝑛⌋ and𝑊 (𝑥 𝑗+1) > ⌊𝜙𝑛⌋.

3 QUANCURRENT
We present Quancurrent, an 𝑟 -relaxed concurrent Quantiles sketch
where 𝑟 depends on system parameters as discussed below. The
algorithm uses 𝑁 update threads to ingest stream elements and
allows an unbounded number of query threads. Queries are pro-
cessed at any time during the sketch’s construction. We consider
a shared memory model that provides synchronization variables
(atomics) and atomic operations to guarantee sequential consis-
tency as in C++ [7]. Everything that happened before a write in one
thread becomes visible to a thread that reads the written value. Also,
there is a single total order of writes that all threads observe. We
use the following sequentially consistent atomic operations (which
force a full fence): fetch-and-add (F&A) [3] and compare-and-swap
(CAS) [2].

In addition, we use a software-implemented higher-level primi-
tive, double-compare-double-swap (DCAS) which atomically updates
two memory addresses as follows: DCAS(𝑎𝑑𝑑𝑟1: 𝑜𝑙𝑑1 → 𝑛𝑒𝑤1,
𝑎𝑑𝑑𝑟2: 𝑜𝑙𝑑2 → 𝑛𝑒𝑤2) is given two memory addresses 𝑎𝑑𝑑𝑟1, 𝑎𝑑𝑑𝑟2,
two corresponding expected values 𝑜𝑙𝑑1, 𝑜𝑙𝑑2, and two new val-
ues 𝑛𝑒𝑤1, 𝑛𝑒𝑤2 as arguments. It atomically sets 𝑎𝑑𝑑𝑟1 to 𝑛𝑒𝑤1 and
𝑎𝑑𝑑𝑟2 to 𝑛𝑒𝑤2 only if both addresses match their expected values,
i.e., the value at 𝑎𝑑𝑑𝑟1 equals 𝑜𝑙𝑑1 and the value at 𝑎𝑑𝑑𝑟2 equals 𝑜𝑙𝑑2.
DCAS also provides wait-free DCAS_READ primitive, which can
read fields that are concurrently modified by a DCAS. DCAS can be
efficiently implemented using single-word CAS [13, 14] in case the
parameters take one word each. Otherwise, it can be implemented
using locks.

In Section 3.1, we present the data structures used by Quancur-
rent. Section 3.2 presents the update operation, and Section 3.3
presents the query. The formal correctness proof is deferred to the
supplementary material.

3.1 Data Structures
Quancurrent’s data structures are described in Algorithm 1 and
depicted in Figure 4. Similarly to the sequential Quantiles sketch,
Quancurrent is organized as a hierarchy of arrays called levels
where the number of levels grows logarithmically with the stream
size. For convenience, we use a parameter MAX_LEVEL to describe
the maximum number of levels. In principle, there is no limit on
the number of levels, though particular implementation can limit
it. Each level can be empty, full, or in propagation. The variable
tritmap maintains the states of all levels. Tritmap is an unsigned
integer, interpreted as an array of trits (trinary digits). The trit
𝑡𝑟𝑖𝑡𝑚𝑎𝑝 [𝑖] describes level 𝑖’s state: if 𝑡𝑟𝑖𝑡𝑚𝑎𝑝 [𝑖] is 0, level 𝑖 con-
tains 0 or 2𝑘 ignored elements and is considered to be empty. If
𝑡𝑟𝑖𝑡𝑚𝑎𝑝 [𝑖] is 1, level 𝑖 contains 𝑘 elements and is deemed full, and
if it is 2, level 𝑖 contains 2𝑘 elements and is associated with the prop-
agation state. Each thread has a local buffer of size 𝑏, localBuf [b].
Before being ingested into the sketch’s levels, stream elements are
buffered in threads’ local buffers and then moved to a processing
unit called Gather&Sort. The Gather&Sort object has two 2𝑘-sized
shared buffers, G&SBuffer [2], each with its own index specifying
the current location, as depicted in Figure 4a.

The query mechanism of Quancurrent includes taking an atomic
snapshot of the levels. Query threads cache the snapshot and the
tritmap that represents it in local variables, snapshot and myTrit,
respectively. As the snapshot reflects only the sketch’s levels and
not G&SBuffers or the thread’s local buffers, Quancurrent is (4𝑘𝑆 +
(𝑁−𝑆)𝑏)-relaxed Quantiles sketch where𝑁 is the number of update
threads and 𝑆 is the number of NUMA nodes.

3.2 Update
The ingestion of stream elements occurs in three stages: (1) gather
and sort, (2) batch update, and (3) propagate level. In stage (1), stream
elements are buffered and sorted into batches of 2𝑘 through a
Gather&Sort object. EachNUMAnode has its designatedGather&Sort
object, which is accessed by NUMA-local threads. Stage (2) exe-
cutes a batch update of 2𝑘 elements from the Gather&Sort object to
𝑙𝑒𝑣𝑒𝑙𝑠 [0]. Finally, in stage (3), 𝑙𝑒𝑣𝑒𝑙𝑠 [0] is propagated up the levels
of the hierarchy.

SPAA ’23, June 17–19, 2023, Orlando, FL, USA. Shaked Elias Zada, Arik Rinberg, and Idit Keidar

Algorithm 1: Quancurrent data structures
1 Parameters and constants:
2 MAX_LEVEL
3 k ⊲ sketch level size
4 b ⊲ local buffer size
5 S ⊲ #NUMA nodes
6 Shared objects:
7 tritmap← 0
8 levels[MAX_LEVEL]
9 NUMA-local objects:

⊲ shared among threads on the same node
10 G&SBuffer[2][2k]
11 index[2]← {0, 0}
12 Thread local objects:
13 localBuf [b]
14 myTrit ⊲ used by query
15 snapshot ⊲ used by query

In the first stage, threads first process stream elements into a
thread-local buffer of size 𝑏. Once the buffer is full, it is sorted
and the thread reserves 𝑏 slots on a shared buffer in its node’s
Gather&Sort unit. It then begins to move the local buffer’s content
to the shared buffer. The shared Gather&Sort buffer contains 2𝑘
elements, and its propagation (during Stage 2) is not synchronized
with the insertion of elements. Thus, some reserved slots might
still contain old values, (which have already been propagated),
instead of new ones. As the batch is a sample of the original stream,
we can accept the possible loss of information in order to improve
performance. Below, we show that the sampling bias this introduces
is negligible.

The pseudo-code for the first stage is presented in Algorithm 2.
To insert its elements to the shared buffer, a thread tries to reserve
𝑏 places in one of the shared buffers using F&A (Line 22). If the
index does not overflow, the thread copies its local buffer to the
reserved slots (Line 24). We refer to the thread that fills the last 𝑏
locations in a G&SBuffer as the owner of the current batch. The
batch owner creates a locally sorted copy of the shared buffer and
begins its propagation (Lines 26-27). As each update thread sorts
its local buffer before moving it to G&SBuffer, a full G&SBuffer
consists of 2𝑘

𝑏
sorted segments (referred to as regions) of size 𝑏.

Thus, the owner simply performs a b-way merge to sort the shared
buffer.

Note that the local buffer is not atomically moved into the shared
buffer (Line 24 is a loop). Thus, the owner might begin a propa-
gation before another thread has finished moving its elements to
the shared buffer. In this case, the old elements already contained
within the G&SBuffer are taken instead. Furthermore, upon moving
its elements later, the writer thread might overwrite more recent
elements. In other words, during this stage, stream elements may
be duplicated and new elements may be dropped. We call these
occurrences holes and analyze their implications in Section 4.1.
Holes may cause some regions in the G&SBuffer to be unsorted. To
address this, the owner thread creates a local copy of the shared
buffer and then performs a single pass to validate that each region

is monotonic, and if not, sorts it. Lastly, the owner uses a b-way
merge to sort the full buffer.

Algorithm 2: Stage 1: gather and sort
16 Procedure update(x):
17 add x to localBuf ⊲ thread-local
18 if ¬localBuf .full() then return
19 sort localBuf
20 i← 0
21 do ⊲ insert to Gather&Sort unit
22 idx ← index[i].F&A(b)
23 if idx < 2𝑘 then ⊲ space available
24 move localBuf to G&SBuffer[i][idx, . . . , idx + 𝑏]
25 if idx + 𝑏 = 2𝑘 then ⊲ owner, filled buffer
26 myCopy ← sorted copy of G&SBuffer [i]
27 batchUpdate(i,myCopy)
28 return
29 i← ¬i
30 while true
31 end

In the second stage, the owner inserts its local sorted copy of the
shared buffer into level 0 using a DCAS. The batch of 2𝑘 elements
is only inserted when level 0 is empty, reflected by the first digit
of the tritmap being 0. We use DCAS to atomically update both
levels[0] to point to the new sorted batch and tritmap to indicate
an ongoing batch update (reflected by setting tritmap[0] to 2). The

Gather & Sort
index[0]

G&SBuffer[0]

index[1]

G&SBuffer[1]
2k

(a) Gather&Sort object.

...
⊥

⊥

k

k

levels[0]

[1]

[2]

[3]

[MAX_LEVEL]

tritmap 0

2k

0 1 1 2

0

⊥

…

(b) Batch update into levels[0].

Figure 4: Quancurrent’s data structures.

Quancurrent: A Concurrent Quantiles Sketch SPAA ’23, June 17–19, 2023, Orlando, FL, USA.

DCAS might fail if other owner threads are trying to insert their
batches or propagate them. The owner keeps trying to insert its
batch into the sketch’s first level until a DCAS succeeds, and then
resets the index of the G&SBuffer to allow other threads to ingest
new stream elements. The pseudo-code for the second stage is
presented in Algorithm 3, and an example is depicted in Figure 4b.

Algorithm 3: Stage 2: batch update
32 Procedure batchUpdate(i,base_copy):
33 while ¬DCAS(levels[0]: ⊥ → base_copy, tritmap[0]: 0

→ 2) do { }
34 index[i]← 0
35 propagate(0)
36 end

In the beginning of the third stage, level 0 points to a new sorted
copy of a G&SBuffer array and tritmap[0]=2. During this stage, the
owner thread propagates the newly inserted elements up the levels
hierarchy iteratively, level by level from level 0 until an empty level
is reached. The pseudo-code for the propagation stage is presented
in Algorithm 4. On each call to propagate, level 𝑙 is propagated
to level 𝑙 + 1, assuming that level 𝑙 contains 2𝑘 sorted elements
and tritmap[𝑙] = 2. If tritmap[𝑙 + 1] = 2, the owner thread is
blocked by another propagation from 𝑙 + 1 to 𝑙 + 2 and it waits
until tritmap[𝑙 + 1] is either a 0 or 1. The owner thread samples 𝑘
elements from level 𝑙 and retains the odd or even elements with
equal probability (Line 39). If tritmap[𝑙 + 1] is 1, then level 𝑙 + 1
contains 𝑘 elements. The sampled elements are merged with level
𝑙+1 elements into a new 2𝑘-sized sorted array (Line 41). We then
(in Line 42) continuously try, using DCAS, to update levels[𝑙+1] to
point to the merged array and atomically update tritmap such that
tritmap[𝑙]← 0, reflecting level 𝑙 is available, and tritmap[𝑙+1]← 2,
reflecting that level 𝑙+1 contains 2𝑘 elements. That is, DCAS takes
3 arguments for each update word (Double), for the first word, the
address of levels[𝑙+1], its expected value i.e., levels[𝑙+1], and the
new merged array, and for the second word, the address of all the
tritmap variable, its full expected value, and the full new value. For
readability, in the DCAS pseudo-code, we emphasize the specific
part being updated (for example, Line 42). After a successful DCAS,
we clear level 𝑙 (set it to ⊥) and proceed to propagate the next level
(Line 44). If tritmap[𝑙+1] is 0, then level 𝑙+1 is empty. We use DCAS
(Line 45) to update levels[𝑙 + 1] to point to the sampled elements
and atomically update tritmap so that tritmap[𝑙] becomes 0, and
tritmap[𝑙+1] becomes 1 (containing 𝑘 elements). After a successful
DCAS, we clear level 𝑙 (set it to ⊥) and end the current propagation.

Propagations of different batches may occur concurrently, i.e.,
level propagation of levels 𝑙 and 𝑙 ′ can be performed in parallel.
Figure 5 depicts an example of concurrent propagation of two
batches.

3.3 Query
Queries are performed by an unbounded number of query threads.
A query returns an approximation based on a subset of the stream
processed so far including all elements whose propagation into
the levels array began before the query was invoked. The query is

Algorithm 4: Stage 3: Propagation of level 𝑙
37 Procedure propagate(l):
38 if l ≥ MAX_LEVEL then return

⊲ choose odd or even indexed elements randomly
39 newLevel← sampleOddOrEven(levels[l])
40 if tritmap[l+1] = 1 then ⊲ next level is full
41 newLevel← merge(newLevel, levels[l+1])
42 while ¬DCAS(levels[l+1]: levels[l+1]→ newLevel,

tritmap[l, l+1]: [2, 1] → [0, 2]) do { }
43 levels[l]← ⊥ ⊲ clear level
44 return propagate(l+1)

⊲ tritmap[l+1] is 0 or 2
45 while ¬DCAS(levels[l+1]: ⊥ → newLevel, tritmap[l,

l+1]: [2, 0] → [0, 1]) do { }
46 levels[l]← ⊥ ⊲ clear level
47 end

served from an atomic snapshot of the levels array. The pseudo-code
is presented in Algorithm 5. Instead of collecting a new snapshot
for each query, we cache the snapshot so that queries may be
serviced from this cache, as long as the snapshot is not too stale.
The snapshot and the tritmap value that represents it are cached in
local variables, snapshot and myTrit, respectively. Query freshness
is controlled by the parameter 𝜌 , which bounds the ratio between
the current stream size and the cached stream size. As long as this
threshold is not exceeded, the cached snapshot may be returned
(Lines 50-51). Otherwise, a new snapshot is taken and cached.

The snapshot is obtained by first reading the tritmap, then read-
ing the levels from 0 toMAX_LEVEL, and then reading the tritmap
again. If both reads of the tritmap represent the same stream size
then they represent the same stream. We can use the levels read to
reconstruct some state that represents this stream. The process is
repeated until two such tritmap values are read. For example, focus-
ing on the last two phases of the propagation in Figure 5, we assume
a query thread 𝑇𝑞 reads 𝑡𝑚1 = 00202, then reads the levels from
levels[0] to levels[4] as depicted in Figure 5 (between the dashed
lines), and then read 𝑡𝑚2 = 00210. The two tritmap reads represent
the same stream of size 10𝑘 , thus a snapshot representing the same
stream can be constructed from the levels read. The pseudo-code
for calculating the stream size is presented in Algorithm 6. Note,
queries are not wait-free and may starve in case of frequent updates.
This can be addressed by blocking updates [25] but we found no
practical need to do so since our experiments do not indicate any
practical problem. Each level is read atomically as the levels’ arrays
are immutable and replaced by pointer swings. The snapshot is
a subset of the levels summarizing the stream. To construct the
snapshot, the collected levels are iterated over, in reversed order,
from MAX_LEVEL to 0, and level 𝑖 is added to the snapshot only if
the total collected stream size (including level 𝑖) is less than or equal
to the stream size represented by the tritmap (Line 61). Back to our
last example, the size of each level collected by 𝑇𝑞 is 2𝑘, 𝑘, 2𝑘, 0, 0
(in descending order). As explained, to construct the snapshot, we
go over the collected levels from snapLevels[4] to snapLevels[0].
By reading snapLevels[1], the total stream size represented by the

SPAA ’23, June 17–19, 2023, Orlando, FL, USA. Shaked Elias Zada, Arik Rinberg, and Idit Keidar

k

k

00110

^

^

^

2k

k

k

^

^

2k

k

2k

00120

^

^

k

2k

00120

^

^

00112

^

k

2k

00122

^

^

2k

2k

2k

00202

^

^

2k

2k

00202

^

^

2k

^
2k

00210

^

^

2k

k

levels[0]

levels[1]

levels[2]

levels[3]

tritmap

levels[4]

^
previous	propagations
propagation	of	batch	i
propagation	of	batch	i + 1

(a) (b) (c) (d) (e) (f) (g)

full
empty

Figure 5: Quancurrent propagation.
(a) The owner of batch 𝑖, owner(𝑖), inserts batch 𝑖 to level 0 and atomically updates 𝑡𝑟𝑖𝑡𝑚𝑎𝑝 [0] to 2. (b) owner(𝑖) merges level 0 with level 1 and

changes 𝑡𝑟𝑖𝑡𝑚𝑎𝑝 [1, 0] from [1, 2] to [2, 0]. (c) owner(𝑖) clears level 0. (d) owner(𝑖 + 1) inserts its batch to level 0 and atomically updates
𝑡𝑟𝑖𝑡𝑚𝑎𝑝 [0] to 2. (e) owner(𝑖) merges level 1 with level 2, and sets 𝑡𝑟𝑖𝑡𝑚𝑎𝑝 [2, 1] to [2, 0]. Batch 𝑖 + 1 is still blocked because level 1 has not been
cleared yet. (f) owner(𝑖) clears level 1. (g) Now owner(𝑖 + 1) successfully merges level 0 with the empty level 1, and sets 𝑡𝑟𝑖𝑡𝑚𝑎𝑝 [1, 0] to [1, 0].

current snapshot is 0 + 0 + 4 · 2𝑘 + 2 · 𝑘 = 10𝑘 . As the stream size
represented by 𝑡𝑚1 and 𝑡𝑚2 is 10𝑘 , the construction of the snapshot
is done and all elements of the processed stream are represented
exactly once. The tritmap myTrit maintains the total size of the
collected stream and each trit describes the state of a collected level.
If level 𝑖 was collected to the snapshot, the value ofmyTrit [𝑖] is the
size of level 𝑖 divided by 𝑘 (Line 63).

As levels propagate from lowest to highest, reading the levels in
the same direction ensures that no element would be missed but
may cause elements to be represented more than once. Building the
snapshot from highest to lowest ensures that each element will be
accounted once. In other words, reading the levels from lowest to
highest and building the snapshot from highest to lowest ensures
that an atomic snapshot is collected, as proven in the Supplementary
material.

4 ANALYSIS
In Section 4.1 we analyze the expected number of holes, and in
Section 4.2 we analyze Quancurrent’s error.

4.1 Holes Analysis
Because the update operation moves elements from the thread’s
local buffer to a shared buffer non-atomically, holes may occur
when the owner thread reads older elements that were written
to the shared buffer in a previous window. The missed (delayed)
writes may later overwrote newer writes. Together, for each hole,
an old value is duplicated and a new value is dropped. As such,
we created a dependency between samples because we dropped an
independent sample and gave double weight to another.

We analyze the expected number of holes under the assumption
of a uniform stochastic scheduler [6], which schedules each thread
with a uniform probability in every step. That is, at each point
in the execution, the probability for each thread to take the next
step is 1

𝑁
. Note that the holes are random and distributed from the

Algorithm 5: Query
48 Procedure Query(𝜙):
49 tm1← tritmap
50 if 𝑡𝑚1.𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑖𝑧𝑒 ()

𝑚𝑦𝑇𝑟𝑖𝑡 .𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑖𝑧𝑒 () ≤ 𝜌 then
51 return snapshot.query(𝜙)
52 do
53 tm1← tritmap
54 snapLevels← read levels 0 to MAX_LEVEL
55 tm2← tritmap
56 while tm1.streamSize() ≠ tm2.streamSize()
57 myTrit ← 0
58 snapshot ← empty snapshot
59 for i← MAX_LEVEL to 0 do
60 weight ← 2𝑖

61 if snapLevels[i].size()·weight+
myTrit.streamSize()≤tm1.streamSize() then

62 add snapLevels[𝑖] to snapshot
63 myTrit[i]← snapLevels[i].size()/𝑘
64 if myTrit.streamSize()=tm1.streamSize() then

break
65 end
66 return snapshot.query(𝜙)
67 end

same distribution. Therefore, they do not affect the samples’ mean
and only affect the accuracy of estimation. Below we show that
the expected number of holes is fairly small and that they have a
marginal effect on the estimation accuracy.

Denote by 𝐻 the total number of holes in some batch of 2𝑘 ele-
ments. G&SBuffer’s array is divided into 2𝑘

𝑏
regions, each consisting

Quancurrent: A Concurrent Quantiles Sketch SPAA ’23, June 17–19, 2023, Orlando, FL, USA.

Algorithm 6: Tritmap
68 Procedure streamSize():
69 curr_stream← 0
70 for i← 0 to MAX_LEVEL do
71 weight ← 2𝑖

72 if tritmap[i] = 1 then
73 curr_stream← curr_stream + weight·𝑘
74 else if tritmap[i] = 2 then
75 curr_stream← curr_stream + weight·2𝑘
76 end
77 return curr_stream
78 end

of 𝑏 slots populated by the same thread. Denote by 𝐻1, . . . , 𝐻 2𝑘
𝑏

the

number of holes in regions 1, . . . , 2𝑘
𝑏
, respectively.

The slots in region 𝑗 are written to by the thread that successfully
increments the shared index from (𝑗 − 1)𝑏 to 𝑗𝑏. We refer to this
thread as𝑇𝑗 . Note that multiple regions may have the same writing
thread. The shared buffer’s owner, 𝑇𝑂 , is 𝑇 2𝑘

𝑏

. To initiate a batch
update, 𝑇𝑂 creates a local copy of one G&SBuffer by iteratively
reading the array. A hole is read in some region 𝑗 if 𝑇𝑂 reads some
index 𝑖 + 1 in this region before the writer thread 𝑇𝑗 writes to the
corresponding index in the same region.

Analysis of 𝑯𝒋 . When 𝑇𝑂 increments the index from 2𝑘 − 𝑏 to
2𝑘 , 𝑇𝑗 may have completed any number of writes between 0 and
𝑏 to region 𝑗 . We first consider the case that 𝑇𝑗 has not completed
any writes. In this case, for a hole to be read in slot 𝑖 + 1 of region 𝑗 ,
𝑇𝑂 ’s read of slot 𝑖 + 1 must overtake 𝑇𝑗 ’s write of the same slot. To
this end, 𝑇𝑂 must write 𝑏 values (from its own local buffer), read
(𝑗 − 1)𝑏 values from the first 𝑗 − 1 regions and then read values
from slots 1, . . . , 𝑖 + 1 in this region before 𝑇𝑗 takes 𝑖 + 1 steps. The
probability that 𝑇𝑂 reads a hole for the first time in this region in
slot 𝑖 + 1 is:

𝜋𝑖, 𝑗 ≜ 𝑃 [hole in slot 𝑖 + 1 | no hole in slots 1 . . . 𝑖]
· 𝑃 [no hole in slots 1 . . . 𝑖] .

For a hole to be read in slot 𝑖 + 1 of region 𝑗 , 𝑇𝑂 must take 𝑏 + (𝑗 −
1)𝑏 + 𝑖 + 1 steps while 𝑇𝑗 takes at most 𝑖 steps, with 𝑇𝑂 ’s read of
slot 𝑖 + 1 being last. But if 𝑇𝑗 takes fewer than 𝑖 steps, a hole is
necessarily read earlier than slot 𝑖 + 1. Therefore, we can bound 𝜋𝑖, 𝑗
by considering the probability that 𝑇𝑗 takes exactly 𝑖 steps while
𝑇𝑂 takes 𝑏 + (𝑗 − 1)𝑏 + 𝑖 steps, and then 𝑇𝑂 takes a step. Ignoring
steps of other threads, each of 𝑇𝑗 and 𝑇𝑂 has a probability of 1

2 to
take a step before the other. Therefore,

𝜋𝑖, 𝑗 ≤
(
1
2

) 𝑗𝑏+2𝑖+1 (
𝑗𝑏 + 2𝑖
𝑖

)
.

Note that this includes schedules in which 𝑇𝑂 reads holes in
previous slots in the same region, therefore it is an upper bound.
Given that 𝑇𝑗 has not yet written in region 𝑗 , the probability, 𝑝 𝑗 ,

that 𝑇𝑂 reads at least 1 hole in region 𝑗 is bounded as follows:

𝑝 𝑗 ≤
𝑏−1∑︁
𝑖=0

𝜋𝑖, 𝑗

If 𝑇𝑗 has completed writes to region 𝑗 , the probability that 𝑇𝑂
reads holes is even lower. Therefore, the probability that 𝐻 𝑗 ≥ 1 is
bounded from above by 𝑝 𝑗 . Using this, we bound the expected total
number of holes in region 𝑗 :

𝐸
[
𝐻 𝑗

]
= 𝑃 (𝐻 𝑗 = 0) · 0 + 𝑃 (𝐻 𝑗 = 1) · 1 + · · · + 𝑃 (𝐻 𝑗 = 𝑏) · 𝑏.

𝑇𝑂 can read at most 𝑏 holes, therefore,

𝐸
[
𝐻 𝑗

]
< 𝑏 ·

(
𝑃 (𝐻 𝑗 = 1) + · · · + 𝑃 (𝐻 𝑗 = 𝑏)

)
= 𝑏 · 𝑃 (𝐻 𝑗 ≥ 1) < 𝑏 · 𝑝 𝑗 .

Using the linearity of expectation, we bound the expected num-
ber of holes in a batch:

𝐸 [𝐻] = 𝐸 [𝐻1] + 𝐸 [𝐻2] + · · · + 𝐸
[
𝐻 2𝑘

𝑏

]
.

In the supplementary material, we prove that

∀𝑗 ≥ 1, 𝑏 ∈ N, 𝐸 [𝐻 𝑗+1] ≤ 0.5 · 𝐸 [𝐻 𝑗]
∀𝑏 ∈ N, 𝐸 [𝐻1] ≤ 1.4

Together, this implies that 𝐸 [𝐻] ≤ 2.8 for all 𝑏 ∈ N.

4.2 Error Analysis
The source of Quancurrent’s estimation error is twofold: (1) the
error induced by sub-sampling the stream, and (2) the additional
error induced by concurrency. For the former, we leverage the
existing literature on analysis of sequential sketches. We analyze
the latter. As the expected number of holes is fairly small and the
holes are random, we disregard their effect on the error analysis.

First, our buffering mechanism induces a relaxation. Let 𝑆 be
the number of NUMA nodes. Recall that each NUMA node has a
Gather&Sort object that contains two buffers of size 2𝑘 . In addition,
each of the𝑁 update threads has a local buffer.When the G&SBuffer
is full, the local buffer of the owner is empty so at most𝑁 −𝑆 threads
locally buffered elements. Therefore, the buffering relaxation 𝑟 is
4𝑘𝑆 + (𝑁 − 𝑆)𝑏.

Rinberg et al. [19] show that for a query of a 𝜙-quantile, an 𝑟 -
relaxation of a Quantiles sketch with parameters 𝜖𝑐 and 𝛿𝑐 , returns
an element whose rank is in the range [(𝜙 − 𝜖𝑟)𝑛, (𝜙 + 𝜖𝑟)𝑛] with
probability at least 1 − 𝛿𝑐 , for 𝜖𝑟 = 𝜖𝑐 + 𝑟

𝑛 (1 − 𝜖𝑐).
On top of this relaxation, our cache mechanism induces further

staleness. Here, the staleness depends on 𝜌 . Let 𝑛𝑜𝑙𝑑 be the stream
size of the cached snapshot, and let 𝑛𝑛𝑒𝑤 be the current stream
size. If 𝑛𝑛𝑒𝑤/𝑛𝑜𝑙𝑑 ≤ 𝜌 then the query is answered from the cached
snapshot. Denote 𝜌 ≜ 1 + 𝜖′ for some 𝜖′ ≥ 0. The element returned
by the cached snapshot is in the range:

[(𝜙 − 𝜖𝑟) 𝑛𝑜𝑙𝑑 , (𝜙 + 𝜖𝑟) 𝑛𝑜𝑙𝑑]

As 𝑛𝑜𝑙𝑑 ≤ 𝑛𝑛𝑒𝑤 , then,

(𝜙 + 𝜖𝑟) 𝑛𝑜𝑙𝑑 ≤ (𝜙 + 𝜖𝑟) 𝑛𝑛𝑒𝑤 ≤
(
𝜙 +

(
𝜖′ + 𝜖𝑟

))
𝑛𝑛𝑒𝑤

SPAA ’23, June 17–19, 2023, Orlando, FL, USA. Shaked Elias Zada, Arik Rinberg, and Idit Keidar

On the other hand,

(𝜙 − 𝜖𝑟) 𝑛𝑜𝑙𝑑 ≥ (𝜙 − 𝜖𝑟)
𝑛𝑛𝑒𝑤

𝜌
=(

𝜙

1 + 𝜖′ −
𝜖𝑟

1 + 𝜖′

)
𝑛𝑛𝑒𝑤 =(

𝜙 − 𝜙𝜖′

1 + 𝜖′ −
𝜖𝑟

1 + 𝜖′

)
𝑛𝑛𝑒𝑤 ≥(

𝜙 −
(
𝜖′ + 𝜖𝑟

))
𝑛𝑛𝑒𝑤

Because 𝜙 ≤ 1 and 𝜖′ ≥ 0 then, 𝜙𝜖 ′

1+𝜖 ′ ≤
𝜖 ′
1+𝜖 ′ ≤ 1.

Therefore, the query returns a value within the range

[(𝜙 − 𝜖) 𝑛, (𝜙 + 𝜖) 𝑛]
for 𝜖 ≜ 𝜖𝑟 + 𝜖′.

5 IMPLEMENTATION AND EVALUATION
In this section we measure Quancurrent’s throughput and esti-
mation accuracy. Section 5.1 presents the experiment setup and
methodology. Section 5.2 presents throughput measurements and
discusses scalability. Section 5.3 experiments with different param-
eter settings, examining how performance is affected by query
freshness. Section 5.4 presents an accuracy of estimation analysis.
Finally, Section 5.5 compares Quancurrent to the state-of-the-art.

5.1 Setup and Methodology
We implement Quancurrent in C++. In this paper, we implement the
atomicDCAS using single-word CAS [13, 14].We setMAX_LEVEL =

31 and tritmap is a single 64-bit word that can represent up to 31
levels, and summarize streams of up to 231𝑘 elements.

Ourmemorymanagement system is based on IBR [24], an interval-
based approach to memory reclamation for concurrent data struc-
tures. The experiments were run on a NUMA system with four
Intel Xeon E5-4650 processors, each with 8 cores, for a total of 32
threads (with hyper-threading disabled).

Each thread was pinned to a NUMA node, and nodes were first
filled before overflowing to other NUMA nodes, i.e., 8 threads use
only a single node, while 9 use two nodes with 8 threads on one and
1 on the second. The default memory allocation policy is local allo-
cation, except for Quancurrent’s shared pointers. Each Gather&Sort
unit is allocated on a different NUMA node and threads update the
G&SBuffers allocated on the node they belong to. The stream is
drawn from a uniform distribution unless stated otherwise. Each
data point is an average of 15 runs, to minimize measurement noise.

5.2 Throughput Scalability
We measured Quancurrent’s throughput in three workloads: (1)
update-only, (2) query-only, and (3) mixed update-query. In the
update-only workload, we update Quancurrent with a stream of
10M elements and measure the time it takes to feed the sketch. For
the other two workloads, we pre-fill the sketch with a stream of
10M elements and then execute the workload (10M queries only
or queries and 10M updates) and measure performance. Figure 6
shows Quancurrent’s throughput in those workloads with 𝑘 = 4096
and 𝑏 = 16,

As shown in Figure 6a, Quancurrent’s performance in the update-
only workload with a single thread is similar to the sequential

algorithm and with more threads it scales linearly, reaching 12𝑥
the sequential throughput with 32 threads. We observe that the
speedup is faster with fewer threads, we believe this is because
once there are more than 8 threads, the shared object is accessed
from multiple NUMA nodes.

Figure 6b shows that, as expected, the throughput of the query-
only workload scales linearly with the number of query threads,
reaching 30𝑥 the sequential throughput with 32 threads.

In the mixed workload, the parameter 𝜌 is significant for perfor-
mance - when 𝜌 = 1 (𝜖′ = 0, no caching), a snapshot is reproduced
on every query. Figure 6c presents the update throughput (left) and
query throughput (right) in the presence of 1 or 2 update threads,
with staleness thresholds of 𝜌 = 1 (𝜖′ = 0) and 𝜌 = 1.05 (𝜖′ = 0.05).
We see that the caching mechanism (𝜌 > 1) is indeed crucial for
performance. As expected, increasing the staleness threshold allows
queries to use their local (possibly stale) snapshot, servicing queries
faster and greatly increasing the query throughout. Furthermore,
more update threads decrease the query throughput, as the up-
date threads interfere with the query snapshot. Finally, increasing
the number of query threads decreases the update throughput, as
query threads interfere with update threads, presumably due to
cache invalidations of the shared state.

5.3 Parameter Exploration
We now experiment with different parameter settings with up to
32 threads. In Figure 7a we vary 𝑘 from 256 to 4096, in update-only
scenario with 𝑏 = 16 and up to 32 update threads. We see that the
scalability trends are similar, and that Quancurrent’s throughput
increases with 𝑘 , peaking at 𝑘 = 2048, after which increasing 𝑘 has
little effect. This illustrates the tradeoff between the sketch size
(memory footprint) to throughput and accuracy.

Figure 7b experiments with different local buffer sizes, from 1 to
64, in an update-only scenario with 𝑘 = 4096 and up to 32 update
threads. Not surprisingly, the throughput increases as the local
buffer grow as this enables more concurrency.

In Figure 7c we vary 𝜌 , in a mixed update-query workload with
8 update threads, 24 query threads, 𝑘 = 1024, and 𝑏 = 16, exploring
another aspect of query freshness versus performance. As expected,
increasing 𝜌 has a positive impact on query throughput, as the
cached snapshot can be queried more often. Figure 7c also shows
the miss rate, which is the percentage of queries that need to re-
construct the snapshot.

5.4 Accuracy
To measure the estimate accuracy, we consider a query invoked in
a quiescent state where no updates occur concurrently with the
query. Figure 8 shows the standard error of 1M estimations in a
quiescent state. We see that Quancurrent’s estimations are similar
to the sequential ones using the same 𝑘 , and improves with larger
values of 𝑘 as known from the literature on sequential sketches [5].

To illustrate the impact of 𝑘 visually, Figure 9 compares the dis-
tribution measured by Quancurrent (red open-circles) to the exact
(full information) stream distribution (green CDF filled-circles). In
Figure 2 (in the introduction), we depict the accuracy of Quancur-
rent’s estimate of a normal distribution with 𝑘 = 1024. Figure 9b

Quancurrent: A Concurrent Quantiles Sketch SPAA ’23, June 17–19, 2023, Orlando, FL, USA.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

10M

20M

30M

40M

50M

Quancurrent Sequential

#Threads

T
h
r
o
u
g
h
p
u
t
[
o
p
/
s
e
c
]

(a) Update-only, 10M elements.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0

10M

20M

30M

40M

50M

Query

#Threads

T
h
r
o
u
g
h
p
u
t
[
o
p
/
s
e
c
]

(b) Query-only, 10M elements prefilled, 10M queries.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

10M

20M

30M

40M

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

10M

20M

30M

40M

1update ε'=0.0

1update ε'=0.05

2update ε'=0.0

2update ε'=0.05

1-2 Updates, Multi Queries, k = 4096

Update Throughput Query Throughput

#Query Threads

T
h
r
o
u
g
h
p
u
t

[
o
p
/
s
e
c
]

(c) One or two update threads, up to 30 query threads, 10M elements inserted after a pre-fill of 10M elements.

Figure 6: Quancurrent throughput, k=4096, b=16.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

10M

20M

30M

40M

50M

k = 256 k = 512 k = 1024 k = 2048

k = 4096

are k, No propagation, b=16, #keys=10M, run

#Threads

T
h
r
o
u
g
h
p
u
t
[
o
p
/
s
e
c
]

(a) Update-only, #keys=10M, b=16.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0

10M

20M

30M

40M

50M

60M

b = 1 b = 2 b = 4 b = 8

b = 16 b = 32 b = 64

Compare b, k = 4096, #keys=10M, runs=15

#Threads

T
h
r
o
u
g
h
p
u
t
[
o
p
/
s
e
c
]

(b) Update-only, #keys=10M, k=4096.

1+0.0ε

1+0.5ε

1+1.0ε

1+1.5ε

1+2.0ε

1+2.5ε

1+3.0ε

1+4.0ε

1+5.0ε

0

2M

4M

6M

8M

10M

12M

14M

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Query Miss Rate

Compare Rho k=1024, uT=8, qT=24

ρ

T
h
r
o
u
g
h
p
u
t
[
o
p
/
s
e
c
]

M
i
s
s

R
a
t
e

(c) 8 update threads, 24 query threads,
#keys=10M, k=1024 and b=16.

Figure 7: Quancurrent parameters impact.

(left) shows that when we reduce 𝑘 to 32, the approximation is less
tight while for 𝑘 = 256 (Figure 9b right) it is very accurate. We
observe similar results for the uniform distribution in Figure 9a.
We experimented with additional distributions with similar results,
which are omitted due to space limitations.

5.5 Comparison with the state of the art
Finally, we compare Quancurrent against a concurrent Quantiles
sketch implemented within the FCDS framework [19], the only
previously suggested concurrent sketch we know that supports
quantiles. Figure 10 shows the throughput results (log scale) for 8,
16, 24 and 32 threads and 𝑘 = 4096. FCDS satisfies relaxed consis-
tency with a relaxation of up to 2𝑁𝐵, where 𝑁 is the number of

worker threads and 𝐵 is the buffer size of each worker. Recall that
Quancurrent’s relaxation is at most 𝑟 = 4𝑘𝑆 + (𝑁 − 𝑆)𝑏. Thus:

𝑟FCDS = 2𝑁𝐵 (1)
𝑟Quancurrent = 4𝑘𝑆 + (𝑁 − 𝑆)𝑏 (2)

For a fair comparison, we compare the two algorithms in settings
with the same relaxation, as follows:

𝑟FCDS = 𝑟Quancurrent (3)
2𝑁𝐵 = 4𝑘𝑆 + (𝑁 − 𝑆)𝑏 (4)

𝐵 =
4𝑘𝑆 + (𝑁 − 𝑆)𝑏

2𝑁
(5)

SPAA ’23, June 17–19, 2023, Orlando, FL, USA. Shaked Elias Zada, Arik Rinberg, and Idit Keidar

0 1000 2000 3000 4000

0

20

40

0 1000 2000 3000 4000

0

20

40

Sequential b = 8 b = 16 b = 32

#Threads=8

#Threads=32

k

S
t
d
e
r
r

Figure 8: Standard error of estimation in quiescent state,
keys=1M, runs=1000.

0 0.2 0.4 0.6 0.8 1
0

2M

4M

6M

8M

10M

0 0.2 0.4 0.6 0.8 1

Quancurrent Exact CDF

k=32 k=256

ϕ

ϕ
-
q
u
a
n
t
i
l
e

(a) Uniform distribution.

0 0.2 0.4 0.6 0.8 1
0

2M

4M

6M

8M

10M

0 0.2 0.4 0.6 0.8 1

Quancurrent Exact CDF

k=32 k=256

ϕ

ϕ
-
q
u
a
n
t
i
l
e

(b) Normal distribution.

Figure 9: Quancurrent quantiles vs. exact CDF, with 32
threads, b=16, and a stream size of 10M.

Given the sketch parameter 𝑘 , the number of update threads 𝑁 ,
the number of NUMA nodes 𝑆 , and a series of Quancurrent’ local
buffer size 𝑏, we calculate the corresponding 𝐵 value (FCDS’s local
buffer size) using Equation 5. Note that the size of the local buffer
𝑏 is bounded by the size of the G&SBuffer array, which is 2𝑘 .

The throughput results are shown in Figure 10. For clarity, some
points with the same relaxation are highlighted using the same
color in both curves. For 8 update threads (𝑆 = 1) and 𝑏 = 2048, the
relaxation of Quancurrent is 𝑟 ≈ 30𝐾 . The same relaxation in FCDS
with the same number of update threads is achieved with a buffer
size of 𝐵 = 1920. With 8 threads, Quancurrent reaches a throughput

of 22𝑀 𝑜𝑝𝑠/𝑠𝑒𝑐 for a relaxation of 30𝐾 whereas FCDS reaches a
throughput of 25.8𝑀 𝑜𝑝𝑠/𝑠𝑒𝑐 for a much larger relaxation of 131𝐾 .
With 32 threads, Quancurrent reaches a throughput of 62𝑀 𝑜𝑝𝑠/𝑠𝑒𝑐
for a relaxation of 123𝐾 , but FCDS only reaches a throughput of
19.4𝑀 𝑜𝑝𝑠/𝑠𝑒𝑐 with a relaxation of more than 500𝐾 .

Overall, we see that FCDS requires large buffers (resulting in
a high relaxation and low query freshness) in order to scale with
the number of threads. This is because, unlike Quancurrent, FCDS
uses a single thread to propagate data from all other threads’ local
buffers into the shared sketch. The propagation involves a heavy
merge-sort, so large local buffers are required in order to offset
it and keep the working threads busy during the propagation. In
contrast, Quancurrent’s propagation is collaborative, with merge-
sorts occurring concurrently both at the NUMA node level (in
Gather&Sort buffers) and at multiple levels of the shared sketch.

6 CONCLUSION
We presented Quancurrent, a concurrent scalable Quantiles sketch.
We have evaluated it and shown it to be linearly scalable for both
updates and queries while providing accurate estimates. Moreover,
it achieves higher performance than state-of-the-art concurrent
quantiles solutions with better query freshness. Quancurrent’s scal-
ability arises from allowingmultiple threads to concurrently engage
in merge-sorts, which are a sequential bottleneck in previous so-
lutions. We dramatically reduce the synchronization overhead by
accommodating occasional data races that cause samples to be
duplicated or dropped, a phenomenon we refer to as holes. This
approach leverages the observation that sketches are approximate
to begin with, and so the impact of such holes is marginal. Future
work may leverage this observation to achieve high scalability in
other sketches or approximation algorithms.

b=512b=1024 b=2048

B=2816 B=4608

B=8192

2×10 4 3×10 4 5×10 4 8×10 4 1×10 5 2×10 5 3×10 5 4×10 5
4×10 6

1×10 7

3×10 7

7×10 7

b=512b=1024 b=2048

B=2816 B=4608

B=8192

2×10 4 3×10 4 5×10 4 8×10 4 1×10 5 2×10 5 3×10 5 4×10 5
4×10 6

1×10 7

3×10 7

7×10 7

b=512b=1024 b=2048

B=2816 B=4608

B=8192

2×10 4 3×10 4 5×10 4 8×10 4 1×10 5 2×10 5 3×10 5 4×10 5
4×10 6

1×10 7

3×10 7

7×10 7

b=512b=1024 b=2048

B=2816 B=4608

B=8192

2×10 4 3×10 4 5×10 4 8×10 4 1×10 5 2×10 5 3×10 5 4×10 5
4×10 6

1×10 7

3×10 7

7×10 7

QuancurrentAa FCDS
Aa

#Threads=8

#Threads=16

#Threads=24

#Threads=32

Total Buffer Size (log scale)

T
h
r
o
u
g
h
p
u
t
[
o
p
/
s
e
c
]

(
l
o
g

s
c
a
l
e
)

Figure 10: Quancurrent vs. FCDS, k = 4096.

Quancurrent: A Concurrent Quantiles Sketch SPAA ’23, June 17–19, 2023, Orlando, FL, USA.

REFERENCES
[1] 2019. Apache DataSketches. https://datasketches.apache.org/.
[2] Accessed: March 2022. Compare and Exchange. https://c9x.me/x86/html/file_

module_x86_id_41.html.
[3] Accessed: March 2022. Exchange and Add. https://c9x.me/x86/html/file_module_

x86_id_327.html.
[4] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak Borkar, Bhuwan Chopra,

Ciprian Gerea, Daniel Merl, Josh Metzler, David Reiss, Subbu Subramanian, et al.
2013. Scuba: Diving into data at facebook. Proceedings of the VLDB Endowment 6,
11 (2013), 1057–1067.

[5] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Zhewei
Wei, and Ke Yi. 2012. Mergeable Summaries. In Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (Scottsdale,
Arizona, USA) (PODS ’12). Association for Computing Machinery, New York, NY,
USA, 23–34. https://doi.org/10.1145/2213556.2213562

[6] Dan Alistarh, Keren Censor-Hillel, and Nir Shavit. 2016. Are lock-free concurrent
algorithms practically wait-free? Journal of the ACM (JACM) 63, 4 (2016), 1–20.

[7] Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ Concur-
rency Memory Model. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI
’08). Association for Computing Machinery, New York, NY, USA, 68–78. https:
//doi.org/10.1145/1375581.1375591

[8] Mihai Budiu, Parikshit Gopalan, Lalith Suresh, Udi Wieder, Han Kruiger, and Mar-
cos K Aguilera. 2019. Hillview: a trillion-cell spreadsheet for big data. Proceedings
of the VLDB Endowment 12, 11 (2019), 1442–1457.

[9] Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, and Pavel Veselỳ.
2021. Relative error streaming quantiles. In Proceedings of the 40th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems. 96–108.

[10] Lee Rhodes Daniel Ting, JonathanMalkin. 2020. Data Sketching for Real Time An-
alytics: Theory and Practice. https://datasketches.apache.org/docs/Community/
KDD_Tutorial_Summary.html.

[11] Druid. Accessed February 16, 2022. Apache Druid. https://druid.apache.org/docs/
latest/development/extensions-core/datasketches-quantiles.html.

[12] Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis. 2018.
Moment-based quantile sketches for efficient high cardinality aggregation queries.
Proceedings of the VLDB Endowment 11, 11 (2018), 1647–1660.

[13] Rachid Guerraoui, Alex Kogan, Virendra J Marathe, and Igor Zablotchi. 2020.
Efficient Multi-Word Compare and Swap. In 34th International Symposium on
Distributed Computing.

[14] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A Practical Multi-Word
Compare-and-Swap Operation. In Proceedings of the 16th International Confer-
ence on Distributed Computing (DISC ’02). Springer-Verlag, Berlin, Heidelberg,
265–279.

[15] Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin, and Ana
Sokolova. 2013. Quantitative Relaxation of Concurrent Data Structures. In Pro-
ceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (Rome, Italy) (POPL ’13). Association for Computing Ma-
chinery, New York, NY, USA, 317–328. https://doi.org/10.1145/2429069.2429109

[16] Zohar Karnin, Kevin Lang, and Edo Liberty. 2016. Optimal Quantile Approxima-
tion in Streams. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS). 71–78. https://doi.org/10.1109/FOCS.2016.17

[17] Charles Masson, Jee E Rim, and Homin K Lee. 2019. DDSketch: a fast and fully-
mergeable quantile sketch with relative-error guarantees. Proceedings of the
VLDB Endowment 12, 12 (2019), 2195–2205.

[18] Presto. Accessed February 16, 2022. PrestoDB. https://prestodb.io/docs/current/
functions/aggregate.html.

[19] Arik Rinberg, Alexander Spiegelman, Edward Bortnikov, Eshcar Hillel, Idit Kei-
dar, Lee Rhodes, and Hadar Serviansky. 2020. Fast Concurrent Data Sketches.
Association for Computing Machinery, New York, NY, USA, 117–129. https:
//doi.org/10.1145/3332466.3374512

[20] Spark. Accessed February 16, 2022. Apache Spark. https://spark.apache.org/docs/
latest/api/python/reference/api/pyspark.sql.DataFrame.approxQuantile.html.

[21] Charalampos Stylianopoulos, Ivan Walulya, Magnus Almgren, Olaf Landsiedel,
and Marina Papatriantafilou. 2020. Delegation sketch: a parallel design with
support for fast and accurate concurrent operations. In Proceedings of the Fifteenth
European Conference on Computer Systems. 1–16.

[22] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and
Neoklis Polyzotis. 2015. Seedb: Efficient data-driven visualization recommenda-
tions to support visual analytics. In Proceedings of the VLDB Endowment Interna-
tional Conference on Very Large Data Bases, Vol. 8. NIH Public Access, 2182.

[23] LuWang, Ge Luo, Ke Yi, andGrahamCormode. 2013. Quantiles over Data Streams:
An Experimental Study. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (New York, New York, USA) (SIGMOD ’13).
Association for Computing Machinery, New York, NY, USA, 737–748. https:
//doi.org/10.1145/2463676.2465312

[24] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and Michael L.
Scott. 2018. Interval-Based Memory Reclamation. In Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (Vienna,
Austria) (PPoPP ’18). Association for Computing Machinery, New York, NY, USA,
1–13. https://doi.org/10.1145/3178487.3178488

[25] Lior Zeno, Dan R. K. Ports, Jacob Nelson, Daehyeok Kim, Shir Landau-Feibish,
Idit Keidar, Arik Rinberg, Alon Rashelbach, Igor De-Paula, and Mark Silberstein.
2022. SwiSh: Distributed Shared State Abstractions for Programmable Switches.
In 19th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22). USENIX Association, Renton, WA, 171–191. https://www.usenix.org/
conference/nsdi22/presentation/zeno

[26] Fuheng Zhao, Sujaya Maiyya, Ryan Wiener, Divyakant Agrawal, and Amr El
Abbadi. 2021. KLL± Approximate Quantile Sketches over Dynamic Datasets.
Proc. VLDB Endow. 14, 7 (apr 2021), 1215–1227. https://doi.org/10.14778/3450980.
3450990

https://datasketches.apache.org/
https://c9x.me/x86/html/file_module_x86_id_41.html
https://c9x.me/x86/html/file_module_x86_id_41.html
https://c9x.me/x86/html/file_module_x86_id_327.html
https://c9x.me/x86/html/file_module_x86_id_327.html
https://doi.org/10.1145/2213556.2213562
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/1375581.1375591
https://datasketches.apache.org/docs/Community/KDD_Tutorial_Summary.html
https://datasketches.apache.org/docs/Community/KDD_Tutorial_Summary.html
https://druid.apache.org/docs/latest/development/extensions-core/datasketches-quantiles.html
https://druid.apache.org/docs/latest/development/extensions-core/datasketches-quantiles.html
https://doi.org/10.1145/2429069.2429109
https://doi.org/10.1109/FOCS.2016.17
https://prestodb.io/docs/current/functions/aggregate.html
https://prestodb.io/docs/current/functions/aggregate.html
https://doi.org/10.1145/3332466.3374512
https://doi.org/10.1145/3332466.3374512
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.approxQuantile.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.approxQuantile.html
https://doi.org/10.1145/2463676.2465312
https://doi.org/10.1145/2463676.2465312
https://doi.org/10.1145/3178487.3178488
https://www.usenix.org/conference/nsdi22/presentation/zeno
https://www.usenix.org/conference/nsdi22/presentation/zeno
https://doi.org/10.14778/3450980.3450990
https://doi.org/10.14778/3450980.3450990

	Abstract
	1 Introduction
	Acknowledgments
	2 Background
	2.1 Problem Definition
	2.2 Sequential Implementation

	3 Quancurrent
	3.1 Data Structures
	3.2 Update
	3.3 Query

	4 Analysis
	4.1 Holes Analysis
	4.2 Error Analysis

	5 Implementation and Evaluation
	5.1 Setup and Methodology
	5.2 Throughput Scalability
	5.3 Parameter Exploration
	5.4 Accuracy
	5.5 Comparison with the state of the art

	6 Conclusion
	References

