
Quancurrent: A ConcurrentQuantiles Sketch
Shaked Elias Zada

Technion
Haifa, Israel

shakeli@alumni.technion.ac.il

Arik Rinberg∗
Technion

Haifa, Israel
arikrinberg@google.com

Idit Keidar
Technion

Haifa, Israel
idish@ee.technion.ac.il

ABSTRACT
Sketches are a family of streaming algorithms widely used in the
world of big data to perform fast, real-time analytics. A popular
sketch type is Quantiles, which estimates the data distribution of
a large input stream. We present Quancurrent, a highly scalable
concurrent Quantiles sketch. Quancurrent’s throughput increases
linearly with the number of available threads, and with 32 threads,
it reaches an update speedup of 12x and a query speedup of 30x
over a sequential sketch. Quancurrent allows queries to occur con-
currently with updates and achieves an order of magnitude better
query freshness than existing scalable solutions.

CCS CONCEPTS
• Theory of computation→ Concurrent algorithms; Sketching
and sampling; Streaming, sublinear and near linear time algorithms.

KEYWORDS
big data; streaming algorithms; sketches; quantiles; real-time anal-
ysis; concurrency

ACM Reference Format:
Shaked Elias Zada, Arik Rinberg, and Idit Keidar. 2023. Quancurrent: A
Concurrent Quantiles Sketch. In Proceedings of the 35th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA ’23), June 17–19, 2023,
Orlando, FL, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3558481.3591074

1 INTRODUCTION
Data sketches, or sketches for short, are indispensable tools for
performing analytics on high-rate, high-volume incoming data
streams [10]. Sketches are designed for stream settings in which
each data item is only processed once. A sketch data structure is
essentially a succinct (sublinear) summary of a data stream that ap-
proximates a specific query (unique element count, quantile values,
etc.).

With the rise of big data, a fundamental task in data manage-
ment and analysis is to describe the distribution of the data. This
is used in applications such as exploratory data analysis [22], op-
eration monitoring [4], and more. Quantile approximation is a

∗This work was completed as a PhD candidate at the Technion.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA ’23, June 17–19, 2023, Orlando, FL, USA.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9545-8/23/06. . . $15.00
https://doi.org/10.1145/3558481.3591074

nonparametric representation, widely used to characterize data
distributions [23, 26].

The Quantiles sketch family captures this task [5, 9, 12, 17]: In
a stream of 𝑛 elements, for any 0 ≤ 𝜙 ≤ 1, a query for quantile
𝜙 returns an estimate of the ⌊𝑛𝜙⌋th largest element. For example,
quantile 𝜙 = 0.5 is the median. Due to the importance of quantiles
approximation, Quantiles sketches are a part of many analytics
platforms, e.g., Druid [11], Hillview [8], Presto [18], and Spark [20].

Our goal in this paper is to build a scalable multi-threaded Quan-
tiles sketch. Specifically, we parallelize the mergeable Quantiles
sketch proposed by Agarwal et al. [5], which is popular e.g., im-
plemented in the Apache DataSketches open-source library [1],
relatively simple, and forms a basis for follow-up works [16, 23].
This sketch is of sublinear-size and provides probably approximately
correct (PAC) estimates, which approximate a quantile within some
error 𝜖𝑛 with a failure probability bounded by some parameter 𝛿 .
Section 2, provides background on the sequential sketch, and Sec-
tion 3 then presents Quancurrent, our highly scalable concurrent
Quantiles sketch.

The vast majority of the literature on sketches considers a sketch
built by a single thread, where queries are served after the sketch
construction is complete. Only recently, we begin to see works lever-
aging parallel architectures to achieve a higher ingestion through-
put while also enabling queries concurrently with updates [19, 21].
Of these, the only solution applicable to quantiles that we are aware
of is the Fast Concurrent Data Sketches (FCDS) framework pro-
posed by Rinberg et al. [19]. FCDS is based on local buffering of
updates by multiple worker threads and a single propagator thread
constantly propagates elements from all local buffers to a shared
global sketch. Queries access the global sketch and return approxi-
mations based on a subset of the stream processed so far, including
all elements that has been propagated into the global sketch. The
freshness the query is governed by the size of the local buffers.

The FCDS paper [19] provides a generic parallel sketch construc-
tion so is applicable also for quantiles. Nevertheless, when FCDS
is used for quantiles, the process of propagation includes a heavy
merge-sort, therefore, by using a single propagator, a sequential
bottleneck is formed. Consequently, large local buffers are required
to offset the heavy sorting and keep the working threads busy dur-
ing propagations resulting low query freshness. The scalability of
FCDS-based Quantiles sketches is thus limited unless large buffers
are used causing query freshness to be heavily compromised (as we
show in Section 5). Note, no FCDS-based Quantiles Sketch imple-
mentation was evaluated in the sketches paper or included as part
of the FCDS contribution to the Apache DataSketches open-source
library [1]. Our goal in this work is to provide a scalable concurrent
Quantiles sketch that retains a small error bound with reasonable
query freshness. We are currently in the process of contributing

https://orcid.org/0000-0002-2135-8840
https://orcid.org/0000-0001-9625-0140
https://orcid.org/0000-0002-6417-1250
https://doi.org/10.1145/3558481.3591074
https://doi.org/10.1145/3558481.3591074
https://doi.org/10.1145/3558481.3591074

SPAA '23, June 17�19, 2023, Orlando, FL, USA. Shaked Elias Zada, Arik Rinberg, and Idit Keidar

our concurrent Quantiles sketch to the Apache DataSketches open-
source library [1].

Like FCDS, Quancurrent relies on local bu�ering of stream ele-
ments, which are then propagated in bulk to a shared sketch. But
Quancurrent improves on FCDS by eliminating the latter's sequen-
tial propagation bottleneck, which mostly stems from the need to
sort large bu�ers.

In Quancurrent, sorting occurs at three levels � a small thread-
local bu�er, an intermediate NUMA-node-local bu�er calledGather&Sort,
and the global shared sketch. Moreover, the shared sketch itself is
organized in multiple levels, which may be propagated (and sorted)
concurrently by multiple threads. While the sequential case may
grow logarithmically with the stream size [5], the memory overhead
of Quancurrent depends only on the number of update threads and
on the number of NUMA nodes, and is independent of the stream
size.

To allow queries to scale as well, Quancurrent serves them from a
cached snapshot of the shared sketch. This architecture is illustrated
in Figure 1. The query freshness depends on the sizes of local and
NUMA-local bu�ers as well as the frequency of caching queries. We
show that using this architecture, high throughput can be achieved
with much smaller bu�ers (hence much better freshness) than in
FCDS.

The collaborative propagation of data to and from shared bu�ers
creates a synchronization challenge. In order to reduce synchroniza-
tion overhead, we accommodate occasional data races. Speci�cally,
we allow bu�ered elements to be sporadically overwritten by others
without being propagated, and others to be duplicated, i.e., prop-
agated more than once. These occurrences, which we callholes,
may result in correlated sampling. When an element is duplicated,
we sample the same element twice instead of sampling an inde-
pendent element. Note that holes are randomly sampled from the
same distribution as the original stream. Thus, they have no e�ect
on the sampling mean. Nevertheless, the correlated sampling may
increase the variance and thus a�ect the accuracy of estimation.
We show in two ways that the error holes introduce is negligible.
First, we empirically show that holes have a marginal e�ect on
accuracy. Figure 2 presents quantiles estimated by Quancurrent

Figure 1: Quancurrent's data structures.

on a stream of normally distributed random values (depicted as
red circles) compared to an exact, brute-force computation of the
quantiles (green dots). We can see that the estimation is accurate.
Second, in Section 4 we statistically analyze the expected number
of holes under the assumption of auniform stochastic scheduler[6].
We show that the probability for a hole is negligible.

Figure 2: Quancurrent quantiles vs. exact CDF, k = 1024, nor-
mal distribution, 32 update threads, 10M elements.

In Section 5 we empirically evaluate Quancurrent on a 32-core
system. We observe linear speedup over the sequential sketch of
both queries and updates, peaking at12x for update-only and30x
for queries concurrent with updates. We compare Quancurrent to
FCDS, which is the state-of-the-art in concurrent sketches, and
show that for FCDS to achieve similar performance it requires an
order of magnitude larger bu�ers than Quancurrent, reducing query
freshness tenfold.

In the Appendix we formally de�ne the system model and present
formal correctness proofs.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. nnnnnnn and Grant No. mmmmmmm.
Any opinions, �ndings, and conclusions or recommendations ex-
pressed in this material are those of the author and do not neces-
sarily re�ect the views of the National Science Foundation.

2 BACKGROUND
2.1 Problem De�nition
Given a stream� = G1• G2• ” ” ” • G= with = elements, therank of some
G(not necessarily in�) is the number of elements smaller thanG
in � , denoted' ¹�• Gº. For any0 � q � 1, theq quantileof � is an
elementGsuch that' ¹�• Gº = bq=c.

A Quantiles sketch's API is as follows:

� update(G) process stream elementG;
� query(q) return an approximation of theq quantile in the

stream processed so far.

A PAC Quantiles sketch with parametersn• Xreturns elementGfor
query(q) after n updates such that' ¹�• Gº 2 »¹q � nº=•¹q ¸ nº=¼,
with probability at least1 � X.

In anA-relaxed sketch for someA � 0 every query returns an
estimate of theq quantile in a subset of the stream processed so far
including all but at mostAstream elements [15, 19].

�ancurrent: A Concurrent �antiles Sketch SPAA '23, June 17�19, 2023, Orlando, FL, USA.

2.2 Sequential Implementation
The Quantiles sketch proposed by Agarwal et al. [5] consists of a
hierarchy of arrays, where each array summarizes a subset of the
overall stream. The sketch is instantiated with a parameter: , which
is a function of¹n• Xº. The �rst array, denoted level0, consists of
at most2: elements, and every subsequent array, in levels1•2• ” ” ”,
consists of either0 or : elements at any given time.

Stream elements are processed in order of arrival, �rst entering
level0, until it consists of2: elements. Once this level is full, the
sketch samples the array by sorting it and then selecting either the
odd indices or the even ones with equal probability. The: sampled
elements are then propagated to the next level, and the rest are
discarded. If the next level is full, i.e., consists of: elements, then
the sketch samples the union of both arrays by performing a merge
sort, and once again retaining either the odd or even indices with
equal probability. This propagation is repeated until an empty level
is reached. Every level that is sampled during the propagation is
emptied. Figure 3 depicts the processing of4: elements.

Figure 3: Quantiles sketch structure and propagation.

Each element is associated with aweight, which is the number
of coin �ips it has �survived�. An element in an array on level8
has a weight of28, as it was sampled8times. Thus, an element
with a weight of 28 represents28 elements in the processed stream.
For approximating theq quantile, we construct a list of tuples,
denotedsamples, containing all elements in the sketch and their
associated weights. The list is then sorted by the elements' values.
Denote by, ¹G8º the sum of weights up to elementG8 in the sorted
list. The estimation of theq quantile is an elementG9, such that
, ¹G9º � b q=c and, ¹G9̧ 1º ¡ bq=c.

3 QUANCURRENT
We present Quancurrent, anA-relaxed concurrent Quantiles sketch
whereAdepends on system parameters as discussed below. The
algorithm uses# update threads to ingest stream elements and
allows an unbounded number of query threads. Queries are pro-
cessed at any time during the sketch's construction. We consider
a shared memory model that provides synchronization variables
(atomics) and atomic operations to guarantee sequential consis-
tency as in C++ [7]. Everything that happened before a write in one
thread becomes visible to a thread that reads the written value. Also,
there is a single total order of writes that all threads observe. We
use the following sequentially consistent atomic operations (which
force a full fence):fetch-and-add (F&A)[3] and compare-and-swap
(CAS)[2].

In addition, we use a software-implemented higher-level primi-
tive,double-compare-double-swap (DCAS)which atomically updates
two memory addresses as follows: DCAS(033A1: >;31 ! =4F1,
033A2: >;32 ! =4F2) is given two memory addresses033A1, 033A2,
two corresponding expected values>;31, >;32, and two new val-
ues=4F1, =4F2 as arguments. It atomically sets033A1 to =4F1 and
033A2 to =4F2 only if both addresses match their expected values,
i.e., the value at033A1 equals>;31 and the value at033A2 equals>;32.
DCAS also provides wait-free DCAS_READ primitive, which can
read �elds that are concurrently modi�ed by a DCAS. DCAS can be
e�ciently implemented using single-word CAS [13, 14] in case the
parameters take one word each. Otherwise, it can be implemented
using locks.

In Section 3.1, we present the data structures used by Quancur-
rent. Section 3.2 presents the update operation, and Section 3.3
presents the query. The formal correctness proof is deferred to the
supplementary material.

3.1 Data Structures
Quancurrent's data structures are described in Algorithm 1 and
depicted in Figure 4. Similarly to the sequential Quantiles sketch,
Quancurrent is organized as a hierarchy of arrays calledlevels
where the number of levels grows logarithmically with the stream
size. For convenience, we use a parameterMAX_LEVELto describe
the maximum number of levels. In principle, there is no limit on
the number of levels, though particular implementation can limit
it. Each level can beempty, full , or in propagation. The variable
tritmap maintains the states of all levels. Tritmap is an unsigned
integer, interpreted as an array of trits (trinary digits). The trit
CA8C<0?»8¼describes level8's state: ifCA8C<0?»8¼is 0, level8con-
tains 0 or 2: ignored elements and is considered to be empty. If
CA8C<0?»8¼is 1, level8contains: elements and is deemed full, and
if it is 2, level8contains2: elements and is associated with the prop-
agation state. Each thread has a local bu�er of size1, localBuf»b¼.
Before being ingested into the sketch's levels, stream elements are
bu�ered in threads' local bu�ers and then moved to a processing
unit calledGather&Sort. TheGather&Sortobject has two2: -sized
shared bu�ers,G&SBu‚er»2¼, each with its ownindexspecifying
the current location, as depicted in Figure 4a.

The query mechanism of Quancurrent includes taking an atomic
snapshot of the levels. Query threads cache the snapshot and the
tritmap that represents it in local variables,snapshotandmyTrit,
respectively. As the snapshot re�ects only the sketch's levels and
not G&SBu�ers or the thread's local bu�ers, Quancurrent is (4:(¸
¹# � (º1)-relaxed Quantiles sketch where# is the number of update
threads and(is the number of NUMA nodes.

3.2 Update
The ingestion of stream elements occurs in three stages: (1)gather
and sort, (2)batch update, and (3)propagate level. In stage (1), stream
elements are bu�ered and sorted into batches of2: through a
Gather&Sortobject. Each NUMA node has its designatedGather&Sort
object, which is accessed by NUMA-local threads. Stage (2) exe-
cutes a batch update of2: elements from theGather&Sortobject to
;4E4;B»0¼. Finally, in stage (3),;4E4;B»0¼is propagated up the levels
of the hierarchy.

SPAA '23, June 17�19, 2023, Orlando, FL, USA. Shaked Elias Zada, Arik Rinberg, and Idit Keidar

Algorithm 1: Quancurrent data structures

1 Parameters and constants:
2 MAX_LEVEL
3 k • sketch level size
4 b • local bu�er size
5 S • #NUMA nodes
6 Shared objects:
7 tritmap 0
8 levels[MAX_LEVEL]
9 NUMA-local objects:

• shared among threads on the same node
10 G&SBu‚er[2][2k]
11 index[2] f 0•0g
12 Thread local objects:
13 localBuf[b]
14 myTrit • used by query
15 snapshot • used by query

In the �rst stage, threads �rst process stream elements into a
thread-local bu�er of size1. Once the bu�er is full, it is sorted
and the thread reserves1 slots on a shared bu�er in its node's
Gather&Sort unit. It then begins to move the local bu�er's content
to the shared bu�er. The shared Gather&Sort bu�er contains2:
elements, and its propagation (during Stage 2) is not synchronized
with the insertion of elements. Thus, some reserved slots might
still contain old values, (which have already been propagated),
instead of new ones. As the batch is a sample of the original stream,
we can accept the possible loss of information in order to improve
performance. Below, we show that the sampling bias this introduces
is negligible.

The pseudo-code for the �rst stage is presented in Algorithm 2.
To insert its elements to the shared bu�er, a thread tries to reserve
1 places in one of the shared bu�ers using F&A (Line 22). If the
index does not over�ow, the thread copies its local bu�er to the
reserved slots (Line 24). We refer to the thread that �lls the last1
locations in a G&SBu�er as theownerof the current batch. The
batch owner creates a locally sorted copy of the shared bu�er and
begins its propagation (Lines 26-27). As each update thread sorts
its local bu�er before moving it to G&SBu�er, a full G&SBu�er
consists of2:

1 sorted segments (referred to asregions) of size1.
Thus, the owner simply performs ab-way mergeto sort the shared
bu�er.

Note that the local bu�er is not atomically moved into the shared
bu�er (Line 24 is a loop). Thus, the owner might begin a propa-
gation before another thread has �nished moving its elements to
the shared bu�er. In this case, the old elements already contained
within the G&SBu�er are taken instead. Furthermore, upon moving
its elements later, the writer thread might overwrite more recent
elements. In other words, during this stage, stream elements may
be duplicated and new elements may be dropped. We call these
occurrencesholesand analyze their implications in Section 4.1.
Holes may cause some regions in the G&SBu�er to be unsorted. To
address this, the owner thread creates a local copy of the shared
bu�er and then performs a single pass to validate that each region

is monotonic, and if not, sorts it. Lastly, the owner uses a b-way
merge to sort the full bu�er.

Algorithm 2: Stage 1: gather and sort

16 Procedure update(x) :
17 addx to localBuf • thread-local
18 if : localBuf.full() then return
19 sort localBuf
20 i 0
21 do • insert to Gather&Sort unit
22 idx index[i].F&A(b)
23 if idx Ÿ 2: then • space available
24 movelocalBuf to G&SBu‚er[i][idx• ” ” ” •idx ¸ 1]
25 if idx ¸ 1 = 2: then • owner, �lled bu�er
26 myCopy sorted copy ofG&SBu‚er»i¼
27 batchUpdate(i,myCopy)
28 return
29 i : i
30 while true
31 end

In the second stage, the owner inserts its local sorted copy of the
shared bu�er into level0 using a DCAS. The batch of2: elements
is only inserted when level0 is empty, re�ected by the �rst digit
of the tritmap being0. We use DCAS to atomically update both
levels[0] to point to the new sorted batch andtritmap to indicate
an ongoing batch update (re�ected by settingtritmap»0¼to 2). The

(a) Gather&Sortobject.

(b) Batch update into levels»0¼.

Figure 4: Quancurrent's data structures.

�ancurrent: A Concurrent �antiles Sketch SPAA '23, June 17�19, 2023, Orlando, FL, USA.

DCAS might fail if other owner threads are trying to insert their
batches or propagate them. The owner keeps trying to insert its
batch into the sketch's �rst level until a DCAS succeeds, and then
resets the index of the G&SBu�er to allow other threads to ingest
new stream elements. The pseudo-code for the second stage is
presented in Algorithm 3, and an example is depicted in Figure 4b.

Algorithm 3: Stage 2: batch update

32 Procedure batchUpdate(i,base_copy) :
33 while : DCAS(levels[0]: ? ! base_copy, tritmap[0]: 0

! 2)do { }
34 index[i] 0
35 propagate(0)
36 end

In the beginning of the third stage, level 0 points to a new sorted
copy of aG&SBu�erarray andtritmap[0]=2. During this stage, the
owner thread propagates the newly inserted elements up the levels
hierarchy iteratively, level by level from level 0 until an empty level
is reached. The pseudo-code for the propagation stage is presented
in Algorithm 4. On each call topropagate, level; is propagated
to level ; ¸ 1, assuming that level; contains2: sorted elements
and tritmap»;¼= 2. If tritmap»; ¸ 1¼= 2, the owner thread is
blocked by another propagation from; ¸ 1 to ; ¸ 2 and it waits
until tritmap»; ¸ 1¼is either a0 or 1. The owner thread samples:
elements from level; and retains the odd or even elements with
equal probability (Line 39). Iftritmap»; ¸ 1¼is 1, then level; ¸ 1
contains: elements. The sampled elements are merged with level
;+1 elements into a new2: -sized sorted array (Line 41). We then
(in Line 42) continuously try, using DCAS, to updatelevels[;+1] to
point to the merged array and atomically updatetritmap such that
tritmap[;] 0, re�ecting level; is available, andtritmap[;+1] 2,
re�ecting that level;+1 contains2: elements. That is, DCAS takes
3 arguments for each update word (Double), for the �rst word, the
address oflevels[;+1], its expected value i.e.,levels[;+1], and the
new merged array, and for the second word, the address ofall the
tritmap variable, itsfull expected value, and thefull new value. For
readability, in the DCAS pseudo-code, we emphasize the speci�c
part being updated (for example, Line 42). After a successful DCAS,
we clear level; (set it to?) and proceed to propagate the next level
(Line 44). Iftritmap»; ¸ 1¼is0, then level; ¸ 1 is empty. We use DCAS
(Line 45) to updatelevels»; ¸ 1¼to point to the sampled elements
and atomically updatetritmap so thattritmap[;] becomes0, and
tritmap[;+1] becomes1 (containing: elements). After a successful
DCAS, we clear level; (set it to?) and end the current propagation.

Propagations of di�erent batches may occur concurrently, i.e.,
level propagation of levels; and;0 can be performed in parallel.
Figure 5 depicts an example of concurrent propagation of two
batches.

3.3 Query
Queries are performed by an unbounded number of query threads.
A query returns an approximation based on a subset of the stream
processed so far including all elements whose propagation into
the levels array began before the query was invoked. The query is

Algorithm 4: Stage 3: Propagation of level;

37 Procedure propagate(l) :
38 if l � MAX_LEVELthen return

• choose odd or even indexed elements randomly
39 newLevel sampleOddOrEven(levels[l])
40 if tritmap[l¸ 1] = 1 then • next level is full
41 newLevel merge(newLevel, levels[l¸ 1])
42 while : DCAS(levels[l¸ 1]: levels[l¸ 1] ! newLevel,

tritmap[l, l¸ 1]: »2•1¼ ! »0•2¼) do { }
43 levels[l] ? • clear level
44 return propagate(l+1)

• tritmap[l+1] is 0 or 2
45 while : DCAS(levels[l¸ 1]: ? ! newLevel, tritmap[l,

l¸ 1]: »2•0¼ ! »0•1¼) do { }
46 levels[l] ? • clear level
47 end

served from an atomic snapshot of the levels array. The pseudo-code
is presented in Algorithm 5. Instead of collecting a new snapshot
for each query, we cache the snapshot so that queries may be
serviced from this cache, as long as the snapshot is not too stale.
The snapshot and the tritmap value that represents it are cached in
local variables,snapshotandmyTrit, respectively. Query freshness
is controlled by the parameterd, which bounds the ratio between
the current stream size and the cached stream size. As long as this
threshold is not exceeded, the cached snapshot may be returned
(Lines 50-51). Otherwise, a new snapshot is taken and cached.

The snapshot is obtained by �rst reading the tritmap, then read-
ing the levels from0 to MAX_LEVEL, and then reading the tritmap
again. If both reads of the tritmap represent the same stream size
then they represent the same stream. We can use the levels read to
reconstruct some state that represents this stream. The process is
repeated until two such tritmap values are read. For example, focus-
ing on the last two phases of the propagation in Figure 5, we assume
a query thread) @readsC<1 = 00202, then reads the levels from
levels»0¼to levels»4¼as depicted in Figure 5 (between the dashed
lines), and then readC<2 = 00210. The two tritmap reads represent
the same stream of size10: , thus a snapshot representing the same
stream can be constructed from the levels read. The pseudo-code
for calculating the stream size is presented in Algorithm 6. Note,
queries are not wait-free and may starve in case of frequent updates.
This can be addressed by blocking updates [25] but we found no
practical need to do so since our experiments do not indicate any
practical problem. Each level is read atomically as the levels' arrays
are immutable and replaced by pointer swings. The snapshot is
a subset of the levels summarizing the stream. To construct the
snapshot, the collected levels are iterated over, in reversed order,
from MAX_LEVELto 0, and level8is added to the snapshot only if
the total collected stream size (including level8) is less than or equal
to the stream size represented by the tritmap (Line 61). Back to our
last example, the size of each level collected by) @is 2:• :• 2:• 0•0
(in descending order). As explained, to construct the snapshot, we
go over the collected levels fromsnapLevels»4¼to snapLevels»0¼.
By readingsnapLevels»1¼, the total stream size represented by the

SPAA '23, June 17�19, 2023, Orlando, FL, USA. Shaked Elias Zada, Arik Rinberg, and Idit Keidar

Figure 5: Quancurrent propagation.
(a) The owner of batch 8, owner(8), inserts batch 8to level 0 and atomically updates CA8C<0?»0¼to 2. (b) owner(8) merges level 0 with level 1 and

changesCA8C<0?»1•0¼from »1•2¼to »2•0¼. (c) owner(8) clears level 0. (d) owner(8¸ 1) inserts its batch to level 0 and atomically updates
CA8C<0?»0¼to 2. (e) owner(8) merges level 1 with level 2, and setsCA8C<0?»2•1¼to »2•0¼. Batch 8¸ 1 is still blocked because level 1 has not been
cleared yet. (f) owner(8) clears level 1. (g) Now owner(8¸ 1) successfully merges level 0 with the empty level 1, and setsCA8C<0?»1•0¼to »1•0¼.

current snapshot is0 ¸ 0 ¸ 4 � 2: ¸ 2 � : = 10: . As the stream size
represented byC<1andC<2is 10: , the construction of the snapshot
is done and all elements of the processed stream are represented
exactly once. The tritmapmyTrit maintains the total size of the
collected stream and each trit describes the state of a collected level.
If level8was collected to the snapshot, the value ofmyTrit»8¼is the
size of level8divided by: (Line 63).

As levels propagate from lowest to highest, reading the levels in
the same direction ensures that no element would be missed but
may cause elements to be represented more than once. Building the
snapshot from highest to lowest ensures that each element will be
accounted once. In other words, reading the levels from lowest to
highest and building the snapshot from highest to lowest ensures
that an atomic snapshot is collected, as proven in the Supplementary
material.

4 ANALYSIS
In Section 4.1 we analyze the expected number of holes, and in
Section 4.2 we analyze Quancurrent's error.

4.1 Holes Analysis
Because the update operation moves elements from the thread's
local bu�er to a shared bu�er non-atomically, holes may occur
when the owner thread reads older elements that were written
to the shared bu�er in a previous window. The missed (delayed)
writes may later overwrote newer writes. Together, for each hole,
an old value is duplicated and a new value is dropped. As such,
we created a dependency between samples because we dropped an
independent sample and gave double weight to another.

We analyze the expected number of holes under the assumption
of auniform stochastic scheduler[6], which schedules each thread
with a uniform probability in every step. That is, at each point
in the execution, the probability for each thread to take the next
step is 1

. Note that the holes are random and distributed from the

Algorithm 5: Query

48 Procedure Query(q) :
49 tm1 tritmap

50 if C<1”BCA40<(8I4¹º
<~)A8C”BCA40<(8I4¹º � d then

51 return snapshot.query(q)
52 do
53 tm1 tritmap
54 snapLevels readlevels0 to MAX_LEVEL
55 tm2 tritmap
56 while tm1.streamSize()< tm2.streamSize()
57 myTrit 0
58 snapshot emptysnapshot
59 for i MAX_LEVELto 0 do
60 weight 28

61 if snapLevels[i].size()�weight+
myTrit.streamSize()� tm1.streamSize()then

62 addsnapLevels»8¼to snapshot
63 myTrit[i] snapLevels[i].size()•:
64 if myTrit.streamSize()=tm1.streamSize()then

break
65 end
66 return snapshot.query(q)
67 end

same distribution. Therefore, they do not a�ect the samples' mean
and only a�ect the accuracy of estimation. Below we show that
the expected number of holes is fairly small and that they have a
marginal e�ect on the estimation accuracy.

Denote by� the total number of holes in some batch of2: ele-
ments. G&SBu�er's array is divided into2:

1 regions, each consisting

�ancurrent: A Concurrent �antiles Sketch SPAA '23, June 17�19, 2023, Orlando, FL, USA.

Algorithm 6: Tritmap

68 Procedure streamSize() :
69 curr_stream 0
70 for i 0 to MAX_LEVELdo
71 weight 28

72 if tritmap[i] = 1 then
73 curr_stream curr_stream¸ weight�:
74 else if tritmap[i] = 2 then
75 curr_stream curr_stream¸ weight�2:
76 end
77 return curr_stream
78 end

of 1 slots populated by the same thread. Denote by� 1• ” ” ” • �2:
1

the

number of holes in regions1• ” ” ” •2:
1 , respectively.

The slots in region9are written to by the thread that successfully
increments the shared index from¹9� 1º1 to 91. We refer to this
thread as) 9. Note that multiple regions may have the same writing
thread. The shared bu�er's owner,) $, is) 2:

1
. To initiate a batch

update,) $ creates a local copy of one G&SBu�er by iteratively
reading the array. A hole is read in some region9if) $ reads some
index8¸ 1 in this region before the writer thread) 9 writes to the
corresponding index in the same region.

Analysis ofNj . When) $ increments the index from2: � 1 to
2: ,) 9 may have completed any number of writes between0 and
1 to region 9. We �rst consider the case that) 9 has not completed
any writes. In this case, for a hole to be read in slot8¸ 1 of region 9,
) $'s read of slot8¸ 1 must overtake) 9's write of the same slot. To
this end,) $ must write1 values (from its own local bu�er), read
¹9� 1º1 values from the �rst 9� 1 regions and then read values
from slots1• ” ” ” • 8̧ 1 in this region before) 9 takes8¸ 1 steps. The
probability that) $ reads a hole for the �rst time in this region in
slot8¸ 1 is:

c8•9, %»hole in slot8¸ 1 j no hole in slots1” ” ” 8¼

� %»no hole in slots1” ” ” 8¼”

For a hole to be read in slot8¸ 1 of region 9,) $ must take1 ¸ ¹ 9�
1º1 ¸ 8¸ 1 steps while) 9 takes at most8steps, with) $'s read of
slot 8¸ 1 being last. But if) 9 takes fewer than8steps, a hole is
necessarily read earlier than slot8¸ 1. Therefore, we can boundc8•9
by considering the probability that) 9 takes exactly8steps while
) $ takes1 ¸ ¹ 9� 1º1 ¸ 8steps, and then) $ takes a step. Ignoring
steps of other threads, each of) 9 and) $ has a probability of12 to
take a step before the other. Therefore,

c8•9�
�
1
2

� 91̧ 28̧ 1 �
91̧ 28

8

�
”

Note that this includes schedules in which) $ reads holes in
previous slots in the same region, therefore it is an upper bound.
Given that) 9 has not yet written in region9, the probability,?9,

that) $ reads at least1 hole in region9is bounded as follows:

?9 �
1� 1Õ

8=0

c8•9

If) 9 has completed writes to region9, the probability that) $
reads holes is even lower. Therefore, the probability that� 9 � 1 is
bounded from above by?9. Using this, we bound the expected total
number of holes in region9:

�
�
� 9

�
= %¹� 9 = 0º � 0 ¸ %¹� 9 = 1º � 1 ¸ � � � ¸ %¹� 9 = 1º � 1”

) $ can read at most1 holes, therefore,

�
�
� 9

�
Ÿ 1 �

�
%¹� 9 = 1º ¸ � � � ¸ %¹� 9 = 1º

�

= 1 � %¹� 9 � 1º Ÿ 1 � ?9”

Using the linearity of expectation, we bound the expected num-
ber of holes in a batch:

� »� ¼= � »� 1¼̧ � »� 2¼̧ � � � ¸ �
h
� 2:

1

i
”

In the supplementary material, we prove that

89� 1•1 2 N• � »� 9̧ 1¼ � 0”5 � � »� 9¼

81 2 N• � »� 1¼ � 1”4

Together, this implies that� »� ¼ � 2”8 for all 1 2 N .

4.2 Error Analysis
The source of Quancurrent's estimation error is twofold: (1) the
error induced by sub-sampling the stream, and (2) the additional
error induced by concurrency. For the former, we leverage the
existing literature on analysis of sequential sketches. We analyze
the latter. As the expected number of holes is fairly small and the
holes are random, we disregard their e�ect on the error analysis.

First, our bu�ering mechanism induces a relaxation. Let(be
the number of NUMA nodes. Recall that each NUMA node has a
Gather&Sort object that contains two bu�ers of size2: . In addition,
each of the# update threads has a local bu�er. When the G&SBu�er
is full, the local bu�er of the owner is empty so at most# � (threads
locally bu�ered elements. Therefore, the bu�ering relaxationAis
4:(¸ ¹ # � (º1.

Rinberg et al. [19] show that for a query of aq-quantile, anA-
relaxation of a Quantiles sketch with parametersn2 andX2, returns
an element whose rank is in the range»¹q � nAº=•¹q ¸ nAº=¼with
probability at least1 � X2, for nA = n2 ¸ A

= ¹1 � n2º.
On top of this relaxation, our cache mechanism induces further

staleness. Here, the staleness depends ond. Let=>;3 be the stream
size of the cached snapshot, and let==4F be the current stream
size. If==4F•=>;3 � d then the query is answered from the cached
snapshot. Denoted , 1¸ n0 for somen0 � 0. The element returned
by the cached snapshot is in the range:

»¹q � nAº =>;3•¹q ¸ nAº =>;3¼

As=>;3 � ==4F , then,

¹q ¸ nAº =>;3 � ¹q ¸ nAº ==4F �
�
q ¸

�
n0 ¸ nA

� �
==4F

SPAA '23, June 17�19, 2023, Orlando, FL, USA. Shaked Elias Zada, Arik Rinberg, and Idit Keidar

On the other hand,

¹q � nAº =>;3 � ¹q � nAº
==4F

d
=

�
q

1 ¸ n0 �
nA

1¸ n0

�
==4F =

�
q �

qn0

1¸ n0 �
nA

1¸ n0

�
==4F �

�
q �

�
n0 ¸ nA

� �
==4F

Becauseq � 1 andn0 � 0 then, qn0

1̧ n0 � n0

1̧ n0 � 1.
Therefore, the query returns a value within the range

»¹q � nº =•¹q ¸ nº =¼

for n , nA ¸ n0.

5 IMPLEMENTATION AND EVALUATION
In this section we measure Quancurrent's throughput and esti-
mation accuracy. Section 5.1 presents the experiment setup and
methodology. Section 5.2 presents throughput measurements and
discusses scalability. Section 5.3 experiments with di�erent param-
eter settings, examining how performance is a�ected by query
freshness. Section 5.4 presents an accuracy of estimation analysis.
Finally, Section 5.5 compares Quancurrent to the state-of-the-art.

5.1 Setup and Methodology
We implement Quancurrent in C++. In this paper, we implement the
atomic DCAS using single-word CAS [13,14]. We setMAX_LEVEL=
31andtritmap is a single 64-bit word that can represent up to 31
levels, and summarize streams of up to231: elements.

Our memory management system is based on IBR [24], an interval-
based approach to memory reclamation for concurrent data struc-
tures. The experiments were run on a NUMA system with four
Intel Xeon E5-4650 processors, each with 8 cores, for a total of 32
threads (with hyper-threading disabled).

Each thread was pinned to a NUMA node, and nodes were �rst
�lled before over�owing to other NUMA nodes, i.e.,8 threads use
only a single node, while9use two nodes with8 threads on one and
1 on the second. The default memory allocation policy is local allo-
cation, except for Quancurrent's shared pointers. Each Gather&Sort
unit is allocated on a di�erent NUMA node and threads update the
G&SBu�ers allocated on the node they belong to. The stream is
drawn from a uniform distribution unless stated otherwise. Each
data point is an average of 15 runs, to minimize measurement noise.

5.2 Throughput Scalability
We measured Quancurrent's throughput in three workloads: (1)
update-only, (2) query-only, and (3) mixed update-query. In the
update-only workload, we update Quancurrent with a stream of
10M elements and measure the time it takes to feed the sketch. For
the other two workloads, we pre-�ll the sketch with a stream of
10M elements and then execute the workload (10M queries only
or queries and 10M updates) and measure performance. Figure 6
shows Quancurrent's throughput in those workloads with: = 4096
and1 = 16,

As shown in Figure 6a, Quancurrent's performance in the update-
only workload with a single thread is similar to the sequential

algorithm and with more threads it scales linearly, reaching12G
the sequential throughput with 32 threads. We observe that the
speedup is faster with fewer threads, we believe this is because
once there are more than8 threads, the shared object is accessed
from multiple NUMA nodes.

Figure 6b shows that, as expected, the throughput of the query-
only workload scales linearly with the number of query threads,
reaching30Gthe sequential throughput with 32 threads.

In the mixed workload, the parameterd is signi�cant for perfor-
mance - whend = 1 (n0 = 0, no caching), a snapshot is reproduced
on every query. Figure 6c presents the update throughput (left) and
query throughput (right) in the presence of1 or 2 update threads,
with staleness thresholds ofd = 1 (n0 = 0) andd = 1”05(n0 = 0”05).
We see that the caching mechanism (d ¡ 1) is indeed crucial for
performance. As expected, increasing the staleness threshold allows
queries to use their local (possibly stale) snapshot, servicing queries
faster and greatly increasing the query throughout. Furthermore,
more update threads decrease the query throughput, as the up-
date threads interfere with the query snapshot. Finally, increasing
the number of query threads decreases the update throughput, as
query threads interfere with update threads, presumably due to
cache invalidations of the shared state.

5.3 Parameter Exploration
We now experiment with di�erent parameter settings with up to
32threads. In Figure 7a we vary: from 256to 4096, in update-only
scenario with1 = 16and up to32update threads. We see that the
scalability trends are similar, and that Quancurrent's throughput
increases with: , peaking at: = 2048, after which increasing: has
little e�ect. This illustrates the tradeo� between the sketch size
(memory footprint) to throughput and accuracy.

Figure 7b experiments with di�erent local bu�er sizes, from1 to
64, in an update-only scenario with: = 4096and up to32update
threads. Not surprisingly, the throughput increases as the local
bu�er grow as this enables more concurrency.

In Figure 7c we varyd, in a mixed update-query workload with
8 update threads,24query threads,: = 1024, and1 = 16, exploring
another aspect of query freshness versus performance. As expected,
increasingd has a positive impact on query throughput, as the
cached snapshot can be queried more often. Figure 7c also shows
the miss rate, which is the percentage of queries that need to re-
construct the snapshot.

5.4 Accuracy
To measure the estimate accuracy, we consider a query invoked in
a quiescent state where no updates occur concurrently with the
query. Figure 8 shows the standard error of 1M estimations in a
quiescent state. We see that Quancurrent's estimations are similar
to the sequential ones using the same: , and improves with larger
values of: as known from the literature on sequential sketches [5].

To illustrate the impact of: visually, Figure 9 compares the dis-
tribution measured by Quancurrent (red open-circles) to the exact
(full information) stream distribution (green CDF �lled-circles). In
Figure 2 (in the introduction), we depict the accuracy of Quancur-
rent's estimate of a normal distribution with: = 1024. Figure 9b

�ancurrent: A Concurrent �antiles Sketch SPAA '23, June 17�19, 2023, Orlando, FL, USA.

(a) Update-only, 10M elements. (b) Query-only, 10M elements pre�lled, 10M queries.

(c) One or two update threads, up to 30 query threads, 10M elements inserted after a pre-�ll of 10M elements.

Figure 6: Quancurrent throughput, k=4096, b=16.

(a) Update-only, #keys=10M, b=16. (b) Update-only, #keys=10M, k=4096.
(c) 8 update threads, 24 query threads,
#keys=10M, k=1024 and b=16.

Figure 7: Quancurrent parameters impact.

(left) shows that when we reduce: to 32, the approximation is less
tight while for : = 256(Figure 9b right) it is very accurate. We
observe similar results for the uniform distribution in Figure 9a.
We experimented with additional distributions with similar results,
which are omitted due to space limitations.

5.5 Comparison with the state of the art
Finally, we compare Quancurrent against a concurrent Quantiles
sketch implemented within the FCDS framework [19], the only
previously suggested concurrent sketch we know that supports
quantiles. Figure 10 shows the throughput results (log scale) for8,
16, 24and32threads and: = 4096. FCDS satis�es relaxed consis-
tency with a relaxation of up to2# � , where# is the number of

worker threads and� is the bu�er size of each worker. Recall that
Quancurrent's relaxation is at mostA= 4:(¸ ¹ # � (º1. Thus:

AFCDS= 2# � (1)

A•ancurrent = 4:(¸ ¹ # � (º1 (2)

For a fair comparison, we compare the two algorithms in settings
with the same relaxation, as follows:

AFCDS= A•ancurrent (3)

2# � = 4:(¸ ¹ # � (º1 (4)

� =
4:(¸ ¹ # � (º1

2#
(5)

SPAA '23, June 17�19, 2023, Orlando, FL, USA. Shaked Elias Zada, Arik Rinberg, and Idit Keidar

Figure 8: Standard error of estimation in quiescent state,
keys=1M, runs=1000.

(a) Uniform distribution.

(b) Normal distribution.

Figure 9: Quancurrent quantiles vs. exact CDF, with 32
threads, b=16, and a stream size of 10M.

Given the sketch parameter: , the number of update threads# ,
the number of NUMA nodes(, and a series of Quancurrent' local
bu�er size1, we calculate the corresponding� value (FCDS's local
bu�er size) using Equation 5. Note that the size of the local bu�er
1 is bounded by the size of theG&SBu�erarray, which is2: .

The throughput results are shown in Figure 10. For clarity, some
points with the same relaxation are highlighted using the same
color in both curves. For8 update threads ((= 1) and1 = 2048, the
relaxation of Quancurrent isA� 30 . The same relaxation in FCDS
with the same number of update threads is achieved with a bu�er
size of� = 1920. With 8 threads, Quancurrent reaches a throughput

of 22" >?B•B42for a relaxation of30 whereas FCDS reaches a
throughput of25”8" >?B•B42for a much larger relaxation of131 .
With 32threads, Quancurrent reaches a throughput of62" >?B•B42
for a relaxation of123 , but FCDS only reaches a throughput of
19”4" >?B•B42with a relaxation of more than500 .

Overall, we see that FCDS requires large bu�ers (resulting in
a high relaxation and low query freshness) in order to scale with
the number of threads. This is because, unlike Quancurrent, FCDS
uses a single thread to propagate data from all other threads' local
bu�ers into the shared sketch. The propagation involves a heavy
merge-sort, so large local bu�ers are required in order to o�set
it and keep the working threads busy during the propagation. In
contrast, Quancurrent's propagation is collaborative, with merge-
sorts occurring concurrently both at the NUMA node level (in
Gather&Sort bu�ers) and at multiple levels of the shared sketch.

6 CONCLUSION
We presented Quancurrent, a concurrent scalable Quantiles sketch.
We have evaluated it and shown it to be linearly scalable for both
updates and queries while providing accurate estimates. Moreover,
it achieves higher performance than state-of-the-art concurrent
quantiles solutions with better query freshness. Quancurrent's scal-
ability arises from allowing multiple threads to concurrently engage
in merge-sorts, which are a sequential bottleneck in previous so-
lutions. We dramatically reduce the synchronization overhead by
accommodating occasional data races that cause samples to be
duplicated or dropped, a phenomenon we refer to as holes. This
approach leverages the observation that sketches are approximate
to begin with, and so the impact of such holes is marginal. Future
work may leverage this observation to achieve high scalability in
other sketches or approximation algorithms.

Figure 10: Quancurrent vs. FCDS, k = 4096.

	Abstract
	1 Introduction
	Acknowledgments
	2 Background
	2.1 Problem Definition
	2.2 Sequential Implementation

	3 Quancurrent
	3.1 Data Structures
	3.2 Update
	3.3 Query

	4 Analysis
	4.1 Holes Analysis
	4.2 Error Analysis

	5 Implementation and Evaluation
	5.1 Setup and Methodology
	5.2 Throughput Scalability
	5.3 Parameter Exploration
	5.4 Accuracy
	5.5 Comparison with the state of the art

	6 Conclusion
	References

