Distributed Services Under
Attack

Shir Cohen

Distributed Services Under
Attack

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Shir Cohen

Submitted to the Senate
of the Technion — Israel Institute of Technology
Tammuz 5783 Haifa July 2023

This research was carried out under the supervision of Prof. Idit Keidar, in the Faculty

of Computer Science.

The author of this thesis states that the research, including the collection, processing
and presentation of data, addressing and comparing to previous research, etc., was
done entirely in an honest way, as expected from scientific research that is conducted
according to the ethical standards of the academic world. Also, reporting the research
and its results in this thesis was done in an honest and complete manner, according to

the same standards.

Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s doctoral

research period, the most up-to-date versions of which being;:

Keren Censor-Hillel, Shir Cohen, Ran Gelles, and Gal Sela. Distributed computations in fully-
defective networks. In Alessia Milani and Philipp Woelfel, editors, PODC ’22: ACM Sympo-
sium on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages 141—
150. ACM, 2022.

Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a coincidence: sub-quadratic asyn-
chronous byzantine agreement WHP. In Hagit Attiya, editor, 34th International Symposium
on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference, volume 179
of LIPIcs, 25:1-25:17. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020.

Shir Cohen and Idit Keidar. Tame the wild with byzantine linearizability: reliable broadcast,
snapshots, and asset transfer. In Seth Gilbert, editor, 35th International Symposium on Dis-
tributed Computing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference),
volume 209 of LIPIcs, 18:1-18:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

Shir Cohen, Idit Keidar, and Oded Naor. Byzantine agreement with less communication:
recent advances. SIGACT News, 52(1):71-80, 2021.

Guy Goren, Lefteris Kokoris-Kogias, Alberto Sonnino, Shir Cohen, and Alexander Spiegel-
man. Proof of availability & retrieval in a modular blockchain architecture. In Financial
Cryptography and Data Security - 27th International Conference, 2023, 2023.

Shir Cohen, Rati Gelashvili, Eleftherios Kokoris-Kogias, Zekun Li, Dahlia Malkhi, Alberto
Sonnino, and Alexander Spiegelman. Be aware of your leaders. In Ittay Eyal and Juan A.
Garay, editors, Financial Cryptography and Data Security - 26th International Conference,
FC 2022, Grenada, May 2-6, 2022, Revised Selected Papers, volume 13411 of Lecture Notes
in Computer Science, pages 279-295. Springer, 2022.

Shir Cohen, Idit Keidar, and Alexander Spiegelman. Make every word count: adaptive byzan-
tine agreement with fewer words. In 26th International Conference on Principles of Dis-
tributed Systems (OPODIS 2022). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2023.

Konstantinos Chalkias, Shir Cohen, Kevin Lewi, Fredric Moezinia, and Yolan Romailler.
Hashwires: hyperefficient credential-based range proofs. Privacy Enhancing Technologies
Symposium (PETS 2021), 2021.

Acknowledgements

I would like to express my heartfelt gratitude to my advisor, Idit Keidar, for her

unwavering guidance, invaluable insights, and endless support throughout this research.

I am grateful to my dedicated research group and friends for productive and enjoy-

able collaborations during my research. You have been pivotal on this journey.

I would like to share my heartfelt appreciation to my family for their continuous
encouragement and motivation. Your belief in my abilities pushed me to strive for

excellence.

Finally, and most importantly, I wish to thank my husband, Barak. Your support
throughout my doctorate is what made it possible. Your steadfast belief in me was my
driving force. Thank you for helping me achieve a ”state of the art” kind of family,
together with our amazing daughter Romy. A special shoutout to my loyal canine

companion, Zeus, for keeping me company during long hours of work.

“Last but not least, I wanna thank me
I wanna thank me for believing in me
I wanna thank me for doing all this hard work
I wanna thank me for having no days off
I wanna thank me for, for never quitting.”

S. Dogg

The generous financial help of the Technion, Hasso Plattner Institute Scholarship, and

the Israel Academy Adams Fellowship is gratefully acknowledged.

Contents

List of Figures
Abstract
Notation and Abbreviations

1 Introduction
1.1 State Machine Replication, Byzantine Agreement, and Cryptocurrency .
1.2 Byzantine Agreement: Background,

1.3 Results. e
2 Results
2.1 Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement
WHP . . e

2.2 Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snap-
shots, and Asset Transfer
2.3 Be Aware of Your Leaders Lo L.
2.4 Make Every Word Count: Adaptive Byzantine Agreement with Fewer
Words e

3 Conclusion and Open Questions
3.1 Conclusion
3.2 Additional Open Questions
3.2.1 Towards Efficient Byzantine Agreement

Bibliography

Hebrew Abstract

o I o O

103
103
106
106

109

List of Figures

1.1

2.1
2.2

2.3
24

2.5

2.6

2.7

3.1

Blockchain Scheme.

Committees sampled in Algorithm 3 (Approver)

An asset transfer object does not have an f-resilient implementation for

Comparative throughput-latency performance of HotStuff equipped with
Carousel and with the baseline round-robin. WAN measurements with
10, 20, 50 parties. No party faults, 500KB maximum block size and 512B
transaction size L. Lo
Comparative throughput-latency performance of HotStuff equipped with
Carousel and with the baseline round-robin. WAN measurements with
10 parties. Zero, one and three party faults, 500KB maximum block size
and 512B transaction size Lo Lo
Comparative performance of HotStuff equipped with Carousel and with
the baseline round-robin when gradually crashing nodes through time.
The input transactions rate is fixed to 10,000 tx/s; 1 party (up to a
maximum of 3) crashes roughly every minute. WAN measurements with
10 parties, 500KB maximum block size and 512B transaction size
Relation between various Byzantine Agreement solutions. Each box uses

the primitives withinit.

Relation between various services. Each box can be implemented using

the primitives withinit.

Abstract

This thesis focuses on distributed systems and their important properties such as fault
tolerance and scalability. The goal is to examine services implemented in distributed
systems that are prone to arbitrary Byzantine faults. The use of distributed systems,
including blockchains, has increased in recent years, posing new challenges in terms of
reliability and scalability.

The thesis begins by discussing three key services in distributed computing: State
Machine Replication (SMR), Byzantine Agreement (BA), and Cryptocurrencies. State
Machine Replication is a fault-tolerant service composed of replicated servers that act
as state machines, ensuring that correct replicas follow the same sequence of state
transitions triggered by client requests. Byzantine Agreement is a problem where a set
of correct processes aim to reach a common decision despite the presence of malicious
Byzantine processes. Cryptocurrencies allow for distributed management of clients’
assets, and a State Machine Replication can be used to implement them.

The thesis then delves into the background of Byzantine Agreement, discussing
different timing models (synchronous, eventual synchrony, and fully asynchronous)
and the complexity lower bounds associated with them. It highlights the recent ad-
vancements in sub-quadratic Byzantine Agreement algorithms using randomness and
cryptographic tools to achieve improved communication complexity.

The results presented in the thesis include the introduction of a sub-quadratic asyn-
chronous Byzantine Agreement algorithm that surpasses existing solutions in terms of
scalability and a synchronous Byzantine Agreement algorithm with adaptive complex-
ity. The thesis also proposes a leader-rotation mechanism called Carousel that ensures
positive Chain-quality and limits the number of faulty leaders in crash-only executions.
Additionally, it explores optimal-resilience algorithms for concurrent shared-memory
objects like asset transfer, reliable broadcast, and snapshot, demonstrating their imple-
mentation from registers.

Overall, this thesis contributes to the field of distributed systems by addressing key
challenges and providing solutions for fault tolerance, scalability, and reliability in the

context of various timing models and cryptographic techniques.

Notation and Abbreviations

BA

BB

ES
GST
LBR
MWMR
PKI
SMR
SWMR
VRF
WHP

Byzantine Agreement

Byzantine Broadcast

Eventual Synchrony

global stabilization time
Leader-based round
Multi-Writer-Multi-Reader (Register)
public key infrastructure

State Machine Replication
Single-Writer-Multi-Reader (Register)
verifiable random functions

with high probability

Chapter 1

Introduction

A distributed system is a computer system in which multiple independent processes
work together to achieve a common goal. These processes can be located in different
geographical locations and communicate with each other to convey information upon
which they act. Such systems are used daily by billions of users, for example by
accessing email services or cloud storage. The main advantage of a distributed system
is that it can provide increased scalability, fault tolerance, and reliability compared to
a centralized system.

Fault tolerance is an important property in distributed systems. It represents the
ability of the system to stay correct and make progress despite the failures of some
subsets of the processes. Therefore, it is important to model these failures in theoretical
settings and to construct algorithms that provide this property.

Different models capture different failures of the processes. Some handle crash
failures, where processes may stop responding, and some handle Byzantine failures. The
latter describes processes that may deviate arbitrarily from the protocol. In particular,
they may crash, fail to send or receive messages, and send arbitrary messages. In both
cases, it is common to model failures by assuming an adversary that determines the
failure pattern and to construct algorithms that are resilient to the worst-case pattern.

Another important property is scalability. Scalability captures the ability to add
resources to the system (e.g., increase the number of processes) in order to improve the
system’s performance and/or to support a bigger number of users. In simpler terms, it
refers to a system’s ability to grow or expand in size or complexity to meet changing
demands.

In this thesis, we seek to examine services that are implemented in distributed
systems and that are prone to arbitrary faults. The use of distributed systems has
increased in the last decades, with a new use case of blockchains — decentralized and
distributed digital ledgers that record transactions across a network of computers. As a
growing crowd uses these systems, guaranteeing properties such as reliability and scal-
ability faces new challenges. Since large and growing deployed real-world systems are

distributed, it is important to study different algorithms and primitives of distributed

computing that provide the above-mentioned properties. In this introduction chapter,
we start by presenting the services discussed in this thesis (Section 1.1). Next, in Sec-
tion 1.2 we cover the background that is the starting point of our work. Finally, in

Section 1.3 we briefly go over the results presented in this thesis.

1.1 State Machine Replication, Byzantine Agreement, and

Cryptocurrency

Some of the most useful primitives in distributed computing are State Machine Repli-
cation (SMR), Byzantine Agreement (BA), and Cryptocurrencies. SMR is a primitive
that provides a fault-tolerant service used by clients. It is composed of replicated
servers that operate in a deterministic manner by acting as state machines. It is done
by ensuring that correct replicas follow the same sequence of state transitions. The
state transitions are triggered by client requests that are fed into the system. In the
context of blockchains, one usually refers to an SMR. protocol as the task of a set of
processes aiming to maintain a growing chain of blocks. Processes participate in a se-
quence of rounds, attempting to form a block per round. A block contains a set of
clients’ transactions and some additional metadata, as well as some information that

links the block to the previous blocks (see Figure 1.1).

Genesis Block Block Block
Block | pooeo - cooco| ©000) Do
i—1 7 1+1
metadata metadata metadata
Data (transactions) Data (transactions) Data (transactions)

Figure 1.1: Blockchain Scheme.

A Byzantine Agreement primitive (BA) [LSP82] often serves as the main building
block for constructing an SMR service. In this problem, a set of correct processes aim
to reach a common decision, despite the presence of up to ¢ malicious (Byzantine) ones.
In the absence of Byzantine processes, this problem is also known as the consensus
problem. Using BA solutions, one can implement SMR by deciding upon the next
state transition (e.g., the next block) at each point in time.

Finally, another widely-use primitive is asset transfer (also called cryptocurrency).
It is used in many applications [Nak09; GHM'17] and allows for distributed manage-

ment of clients’ assets. In its most basic form, it provides each account holder the ability

to transfer assets to other accounts and read one’s balance. One way to implement an
asset transfer is by using SMR, where the transactions are the form of transferring the
assets, and the state of the state reflects the balances of different users. That is, a
blockchain is a specific implementation of an asset transfer. But as we elaborate in this
work, it is not the only form.

The above-mentioned primitives are the starting point of the research that appears
in this thesis. Specifically, BA plays an important role in all of the papers included,
and Section 1.2 covers the prior work related to it. This section also provides a quick
overview of different models under which this primitive, along with other distributed
services, are being examined.

Tracing back to the beginning of this introduction, distributed systems usually
embody some sort of solution to the consensus problem. As we mentioned, distributed
systems are not new and in fact, BA has been studied for four decades now. However,
until recently, it has been considered at a fairly small scale. The practical use cases
of BA in large-scale systems motivate a push for reduced communication complexity.

This goal has guided us in our research work.

1.2 Byzantine Agreement: Background

As a starting point, we begin by stating the notation used in this work. We notate
the number of processes in a system by n and use the letter ¢ to denote the threshold
of failures in this system. That is, up to t out of n processes may fail according to
the discussed adversarial model (crash-fault, Byzantine, etc.). The highest threshold
of faults that can be met is called optimal resilience and it varies in different models.
For example, in a synchronous model with the optimal resilience is n > 2t + 1 [DS83].

The efficiency of a protocol can be measured by its word complexity. The word
complexity of a deterministic BA protocol is defined as the number of words all correct
processes send until a decision is reached, where a word is a constant number of bits
(e.g., the size of a PKI signature). It has been shown by Dolev and Reischuk [DR85]
that in deterministic algorithms Q(n?) word complexity is needed in the worst-case,
assuming t = O(n). Nevertheless, almost all deterministic works incur a word com-
plexity of at least O(n?) in a synchronous model with the optimal resilience [DS83;
AMNT20]. In fact, this gap remained open for 35 years until recently Momose and
Ren [MR20] solved synchronous BA with optimal resilience with O(n?) words. It is
worth mentioning that less resilient solutions with O(n?) complexity have been known
prior to this result.

Yet synchronous solutions are not robust in large-scale systems, where messages can
be delayed for extensive periods. A more practical approach is to consider the even-
tual synchrony (ES) model, where communication is initially asynchronous but even-
tually becomes synchronous. Eventually synchronous algorithms always ensure safety,

but their liveness is conditioned on communication becoming timely. In this model,

performance is measured during the synchronous period, and the optimal resilience
is n = 3t + 1. Recent works have used threshold cryptography in order to achieve
quadratic complexity in certain optimistic scenarios [AGM18; BCC*19; YMR™19;
GLT+20; MR20].

Because attackers may cause communication delays, an even more robust approach
is to consider a fully asynchronous model. But in this model, BA cannot be solved
deterministically [FLP85]. Although the complexity lower bound does not apply to
randomized algorithms, until fairly recently, randomized solutions also required (ex-
pected) O(n?) word complexity [Rab83; CKS05; MMR15; AMS19).

A few recent studies have used randomness to circumvent Dolev and Reischuk’s
lower bound and provide BA solutions with sub-quadratic word complexity [KS11;
GHM™17; Nak09; CKS20; AGM18; BCC*19; Kwol4; NBMS20; Spi21] in all three
timing models. In general, there are two approaches to using probability in achieving
this goal. The first is weakening the problem guarantees to probabilistic ones. Works
in this vein usually utilize committee sampling, assume an adaptive adversary, and
provide probabilistic safety and liveness [KS11; GHM™17; Nak09; CKS20]. The second
considers models in which deterministic BA solutions are possible, and designs protocols
where the expected complexity is sub-quadratic [AGM18; BCCT19; Kwol4; NBMS20;
Spi21]. The latter works are resilient only to a static adversary whereas the former
tolerate a dynamic one. That is, they are resilient to an adversary that has to decide

the corruption pattern before the execution of the protocol.

1.3 Results

The first work in this thesis, “Not a COINcidence: Sub-Quadratic Asynchronous Byzan-
tine Agreement WHP” (Chapter 2.1), introduces the first sub-quadratic BA algorithm
for an asynchronous message-passing environment. This is a significant improvement
over Algorand [GHM™17], one of the leading blockchain companies nowadays. While
Algorand is restricted to models with timing assumptions, our solution is completely
free of these limitations. This work takes advantage of cryptographic tools (verifiable
random functions [MRV99]) and uses subtle probability techniques to show that with
high probability, a sub-quadratic solution for the BA problem is obtained.

In a later work, “Make Every Word Count: Adaptive Byzantine Agreement with
Fewer Words” (Chapter 2.4) we focus on a synchronous model and try to redefine what
can be done under such a model. In this work, we present the first BA algorithm
with O(n(f + 1)) communication complexity and resilience n = 2t + 1, where ¢ is
an upper bound on process failures in a run and f is the actual number of process
failures. We call the communication complexity that depends on f rather than on ¢ an
adaptive complexity. To achieve this property in this work we take advantage of another
cryptographic tool, called threshold signatures. This tool allows to aggregate multiple

signatures into one-word messages and is commonly used with a threshold of n—t. Le.,

the number of guaranteed correct processes in the system. Unfortunately, in a system
with resilience n = 2t 4+ 1, there is not much that can be done with this threshold.
Instead, we utilized a threshold on the number of signatures such that on one hand,
this number is sufficient to ensure a safe algorithm with adaptive communication in
case there are not “many” Byzantine processes. On the other hand, failing to achieve
this threshold indicates a high number of failures, which allows the use of a quadratic
fallback algorithm.

As discussed BA solutions are commonly used to construct SMRs. And while any
BA provides the mechanism to elect the next state in the SMR, most deployed systems
in the era of blockchains focus on leader-based solutions. In such systems, the series of
decisions has context within their position in the sequence. Every decision is driven by a
designated leader, which is usually rotated in each round. Leader-rotation is specifically
important in a Byzantine setting since processes should not trust each other for load
sharing, reward management, resisting censoring of submitted transactions, or ordering
requests fairly.

Most existing Leader-rotation mechanisms are implemented in the eventually-synchronous
model and use a round-robin approach to rotate leaders [Tea; YMR™19; CS20]. This
guarantees that correct processes get a chance to be leaders infinitely often, which is suf-
ficient to drive progress and satisfy a property called Chain-quality [GKIL15]. Roughly
speaking, the latter stipulates that the number of blocks committed to the chain by
correct processes is proportional to the correct processes’ percentage. The drawback of
such a mechanism is that it does not bound the number of faulty processes which are
designated as leaders during an execution. In the paper “Be Aware of Our Leaders” that
appears in Chapter 2.3, we propose a leader-rotation mechanism, Carousel, that enjoys
both worlds. Carousel satisfies non-zero Chain-quality, and at the same time, bounds
the number of faulty leaders in crash-only executions after the global stabilization time
(GST), a property we call Leader-utilization.

Finally, the asset-transfer primitive is discussed in Chapter 2.2, in the work “Tame
the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset
Transfer”. The emerging interest in BA and SMR solutions is their significant role in
the construction of blockchains nowadays. However, blockchain is just one technology
that solves the asset transfer problem. To find new solutions, we revisit the problem in
a shared-memory model. This model differs from the message-passing model discussed
so far, in the way that processes communicate among themselves. While the previous
works assumed that communication is done via messages they send and receive to one
another, we now consider that processes have common registers from which they can
read, and can write (different registers have different read-write permissions). In this
context, we have undertaken a new research direction. We defined a general correct-
ness notion for concurrent shared-memory objects used by Byzantine processes and
systematically studied shared objects in this regard.

In the presented work, we designed optimal-resilience algorithms for some of the

most useful concurrent shared-memory objects: asset transfer, reliable broadcast, and
snapshot. Reliable broadcast and snapshot are used to implement the asset trans-
fer object but are also of independent interest. We prove that there is an t-resilient

implementation of such objects from registers with n processes if and only if ¢ < 3.

10

Chapter 2

Results

2.1 Not a COINcidence: Sub-Quadratic Asynchronous Byzan-
tine Agreement WHP

Appears in the 34th International Symposium on Distributed Computing (DISC 2020).

11

Not a COINcidence: Sub-Quadratic Asynchronous
Byzantine Agreement WHP
Shir Cohen

Technion, Israel
shirco@campus.technion.ac.il

Idit Keidar
Technion, Israel
idish@ee.technion.ac.il

Alexander Spiegelman
VMware Research, Israel
sasha.spiegelman@gmail.com

—— Abstract
King and Saia were the first to break the quadratic word complexity bound for Byzantine Agreement
in synchronous systems against an adaptive adversary, and Algorand broke this bound with near-
optimal resilience (first in the synchronous model and then with eventual-synchrony). Yet the
question of asynchronous sub-quadratic Byzantine Agreement remained open. To the best of our
knowledge, we are the first to answer this question in the affirmative. A key component of our
solution is a shared coin algorithm based on a VRF. A second essential ingredient is VRF-based
committee sampling, which we formalize and utilize in the asynchronous model for the first time.
Our algorithms work against a delayed-adaptive adversary, which cannot perform after-the-fact
removals but has full control of Byzantine processes and full information about communication in
earlier rounds. Using committee sampling and our shared coin, we solve Byzantine Agreement with
high probability, with a word complexity of 5(71) and O(1) expected time, breaking the O(n?) bit
barrier for asynchronous Byzantine Agreement.

2012 ACM Subject Classification Theory of computation — Distributed algorithms; Theory of
computation — Cryptographic primitives; Mathematics of computing — Probabilistic algorithms

Keywords and phrases shared coin, Byzantine Agreement, VRF, sub-quadratic consensus protocol

1 Introduction

Byzantine Agreement (BA) [27] has been studied for four decades by now, but until recently,
has been considered at a fairly small scale. In recent years, however, we begin to see practical
use-cases of BA in large-scale systems, which motivates a push for reduced communication
complexity. In deterministic algorithms, Dolev and Reischuk’s renown lower bound stipulates
that Q(n?) communication is needed [17], and until fairly recently, almost all randomized
solutions have also had (expected) quadratic word complexity. Recent work has broken this
barrier [22, 20, 31], but not in asynchronous settings. We present here the first sub-quadratic
asynchronous Byzantine Agreement algorithm. Our algorithm is randomized and solves
binary BA with high probability (whp), i.e., with probability that tends to 1 as n goes to
infinity.

We consider a system with a static set of n processes, in the so-called “permissioned”
setting, where the ids of all processes are well-known. Our algorithm tolerates f failures for
n =~ 4.5f (asymptotically). In addition, we assume a trusted public key infrastructure (PKI)
that allows us to use verifiable random functions (VRFs) [29].

We assume a strong adversary that can adaptively take over processes, whereupon it has
full access to their private data. It further sees all messages in the system. But we do limit
the adversary in two ways. First, we assume that it is computationally bounded so that we

12

Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

may use the PKI. Second, as proven in [1] for the synchronous model, achieving sub-quadratic
complexity is impossible when the adversary can perform after-the-fact removal, meaning
that it can delete messages that were sent by correct processes before corrupting these
processes. Here, we adapt the no after-the-fact removal assumption to the asynchronous
model, and define a delayed-adaptive adversary based on causality [26].

We formalize the concept of VRF-based committee sampling as used in Algorand [20, 15],
and adapt it to the asynchronous model. In a nutshell, the idea is to use a VRF seeded with
each process’s private key in order to sample uniformly at random O(logn) processes for
a committee, and to have different committees execute different parts of the BA protocol.
Each committee is used for sending exactly one protocol message and messages are sent
only by committee members, thus reducing the communication cost. Whereas in Algorand’s
synchronous model a process can be sure it receives messages from all correct committee
members by a timeout, in the asynchronous model this is not the case. Rather, processes
make progress by waiting for some threshold number of messages. Without committees, this
threshold is normally n — f (waiting for more than n — f processes might violate termination).
But since committees are randomly sampled, we do not know the committee’s exact size
or the number of Byzantine processes in it. Thus, adapting committees to this model is
somewhat subtle and requires ensuring certain conditions regarding the intersection of subsets
of committees. In this paper we identify sufficient conditions on sampling, which ensure
safety and liveness with high probability.

Randomized BA algorithms can be seen as if processes toss a random coin at some point
during the protocol. While some protocols toss a local coin [9, 12] and require exponential
expected time to reach agreement, others use the abstraction of a shared coin, which involves
communication among processes and results in the same coin toss with some well defined
success rate [33, 14, 13, 20, 23]. In this work we present an asynchronous shared coin
algorithm that uses a VRF and provides a constant success rate with an equal probability for
tossing 0 and 1. Unlike previous shared coin implementations, our solution does not require
a priori knowledge of the set of participants, which makes it useful in committee-based
constructions. We then adapt our coin to work with committees and use it to devise a
sub-quadratic BA algorithm.

In summary, this paper presents the first formalization of randomly sampled committees
using cryptography in asynchronous settings. Based on this technique, it presents the first
sub-quadratic asynchronous shared coin and BA whp algorithms. Our algorithms have
expected O(n) word complexity and O(1) expected time.

Roadmap. The rest of this paper is organized as follows. Section 2 describes the model;
Section 3 reviews related work. In Section 4, we present our shared coin algorithm and
in Section 5, we formalize committee sampling. Then, in Section 6, we use the coin and
the committee sampling to construct a BA whp algorithm. We end with some concluding
remarks in Section 7.

2 Model and Preliminaries

We consider a distributed system consisting of a well-known static set II of n processes and
a delayed-adaptive adversary (see definition below). The adversary may adaptively corrupt
up to f = (3 — €)n processes in the course of a run, where max{gp—,0.109} + gi— < € < 3.
A corrupted process is Byzantine; it may deviate arbitrarily from the protocol. In particular,

it may crash, fail to send or receive messages, and send arbitrary messages. As long as a
process is not corrupted by the adversary, it is correct and follows the protocol.

13

S. Cohen, I. Keidar and A. Spiegelman

Delayed-adaptive adversary. In the synchronous model, one defines a late adver-
sary [34, 24, 7, 4], which at the beginning of round r, can observe the state of the system at
the beginning of round r — 1. This assumption prevents “after-the-fact” removals of messages
sent by processes before being taken over by the adversary [1, 20], as required for achieving
a sub-quadratic communication cost. We adapt this assumption to the asynchronous model.
Since in asynchronous models the natural order between messages is Lamport’s happens-
before relation [26], we use the notion of causality instead of ‘rounds’ to define what messages
the adversary may observe when scheduling other messages. We denote by m — m’ the fact
that m causally precedes m’. The adversary is formally defined as follows:

» Definition 1 (delayed-adaptive adversary). The delayed-adaptive adversary may adaptively
corrupt up to f processes over the course of a run and schedules all messages. The adversary
has full access to corrupted processes’ private information and can observe all communication,
but it can use the contents of a message m sent by a correct process for scheduling a message
m’ only if m — m’.

In addition, we assume that once the adversary takes over a process, it cannot “front
run” messages that that process had already sent when it was correct, causing the correct
messages to be supplanted. Blum et al. [10] achieve this property by using a separate key to
encrypt each message, and deleting the secret key immediately thereafter.

Cryptographic tools. We assume a trusted PKI, where private and public keys for the
processes are generated before the protocol begins and processes cannot manipulate their
public keys. In addition, we assume that the adversary is computationally bounded, meaning
that it cannot obtain the private keys of processes unless it corrupts them. Furthermore, we
assume that the PKI is in place from the outset. (Recall that we assume a permissioned
setting, so the public keys of the n processes are well-known). These assumptions allow us
to use verifiable random functions, as we now define.

A wverifiable random function (VRF) is a pseudorandom function that provides a proof of
its correct computation [29]. Given a secret key sk, one can evaluate the VRF on any input
x and obtain a pseudorandom output y together with a proof m, i.e., (y,m) = VRFs ().
From 7 and the corresponding public key pk, one can verify that y is correctly computed
from = and sk using the function VRF-Very(z, (y, 7)). Additionally, a VRF needs to satisfy
uniqueness. More formally, a VRF guarantees the following properties:

Pseudorandomness: for any z, it is infeasible to distinguish y = VRFg(x) from a
uniformly random value without access to sk.

Verifiability: VRF-Ver,;(z, VRF 44 (z)) = true.

Uniqueness: it is infeasible to find x,y1, yo, m1, m2 such that y; # yo but VRF-Ver,;(z,-
(y1,m1)) = VRF-Very,(z, (y2, m2)) = true.

Efficient constructions for VRFs have been described in the literature [16, 19].

Communication. We assume that every pair of processes is connected via a reliable
link. Messages are authenticated in the sense that if a correct process p; receives a message
m indicating that m was sent by a correct process p;, then m was indeed generated by p;
and sent to p;. The network is asynchronous, i.e., there is no bound on message delays.

Complexity. We use the following standard complexity notions [3, 30]. While measuring
complexity, we allow a word to contain a signature, a VRF output, or a value from a finite
domain. We define the duration of an execution as the longest sequence of messages that are
causally related in this execution until all correct processes decide. We measure the expected
word communication complexity of our protocols as the maximum of the expected total

14

Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

number of words sent by correct processes and the expected running time of our protocol as
the maximum of the expected duration. In both cases the maximum is computed over all
inputs and applicable adversaries and expectation is taken over the random VRF outputs.

3 Related Work

Lower bounds. Our assumptions conform with a number of known bounds. Deterministic
consensus is impossible in an asynchronous system if even one process may crash (by FLP [18])
and requires 2(n?) communication even in synchronous systems [17]. As for randomized
Byzantine Agreement, Abraham et al. [1] state that disallowing after-the-fact removal is
necessary even in synchronous settings for achieving sub-quadratic communication.

Asynchronous BA and shared coin algorithms. The algorithms we present in this
paper belong to the family of asynchronous BA algorithms, which sacrifice determinism in
order to circumvent FLP. We compare our solutions to existing ones in Table 1.

Ben-Or [9] suggested a protocol with resilience n > 5f. This protocol uses a local coin
(namely, a local source of randomness) and its expected time complexity is exponential
(or constant if f = O(y/n)). Bracha [11] improved the resilience to n > 3f with the same
complexity. The complexity can be greatly reduced by replacing the local coin with a shared
one with a guaranteed success rate.

Later works presented the shared coin abstraction and used it to solve BA with O(n?)
communication. Rabin [33] was the first to do so, suggesting a protocol with resilience
n > 10f and a constant expected number of rounds. Cachin et al. [13] were the first to use
a shared coin to solve BA with O(n?) communication and optimal resilience. Mostefaoui
et al. [30] then presented a signature-free BA algorithm with optimal resilience and O(n?)
messages that uses a shared coin abstraction as a black box; the shared coin algorithm we
provide in Section 4 can be used to instantiate this protocol. All of the aforementioned
algorithms solve binary BA, where the processes’ initial values are 0 and 1; a recent work
solved multi-valued BA with the same O(n?) word complexity [3].

BA algorithms also differ in the cryptographic assumptions they make and the cryp-
tographic tools they use. Rabin’s coin [33] is based on cryptographic secret sharing [35].
Some later works followed suit, and used cryptographic abstractions such as threshold
signatures [3, 13]. Other works forgo cryptography altogether and instead consider a
full information model, where there are no restrictions on the adversary’s computational
power [14, 23]. In this model, the problem is harder, and existing works achieve very low
resilience [23] (n > 400f) or high communication complexity [14]. In this paper we do use
cryptographic primitives. We assume a computationally bounded adversary and rely on the
abstraction of a VRF [29]. VRFs were previously used in blockchain protocols [20, 21, 5] and
were also used by Micali [28] to construct a shared coin in the synchronous model.

Several works [2, 8, 25, 32, 36] solve BA with subquadratic complexity in the so-called
optimistic case (or “happy path”), when communication is timely and a correct process is
chosen as a “leader”. In contrast, we focus on the worst-case asynchronous case.

Committees. We use committees in order to reduce the word complexity and allow
each step of the protocol to be executed by only a fraction of the processes. King and Saia
used a similar concept and presented the first sub-quadratic BA protocol in the synchronous
model [22]. Algorand proposed a synchronous algorithm [20] (and later extended it to
eventual synchrony [15]) where committees are sampled randomly using a VRF. Each process
executes a local computation to sample itself to a committee, and hence the selection of
processes does not require interaction among them. We follow this approach in this paper

15

S. Cohen, I. Keidar and A. Spiegelman

Table 1 Asynchronous Byzantine Agreement algorithms.

Protocol n > Adversary Word complexity Termination Safety
Ben-Or [9] 5f adaptive o(2") w.p. 1 v
Rabin [33] 10f adaptive O(n?) w.p. 1 v
Bracha [11] 3f adaptive o@2n) w.p. 1 v
Cachin et al. [13] 3f adaptive O(n?) w.p. 1 v
King-Saia [23] 400f adaptive polynomial whp v
MMR [30] 3f adaptive O(n?) w.p. 1 v
Our protocol ~ 4.5f delayed-adaptive O(n) whp whp

and adapt the technique to the asynchronous model.

Following initial publication of our work, Blum et al. [10] have also achieved subquadratic
BA WHP under an adaptive adversary. Their assumptions are incomparable to ours — while
they strengthen the adversary to remove the delayed adaptivity requirement, they also
strengthen the trusted setup. Specifically, they use a trusted dealer to a priori determine
the committee members, flip the shared coin, and share it among the committee members.
In contrast, we use a peer-to-peer protocol to generate randomness, and require delayed
adaptivity in order to prevent the adversary from tampering with this randomness. As in
our protocol, setup has to occur once and may be used for any number of BA instances.

4 Shared Coin

We describe here an asynchronous protocol for a shared coin with a constant success rate
against the delayed-adaptive adversary. We assume that for every r € N, shared_ coin(r) is
invoked by all correct processes and that the invocation of shared coin(r) by some process p
is causally independent of its progress at other processes. The definition of a shared coin is
given below.

» Definition 2 (Shared Coin). A shared coin with success rate p is a shared object that generates
an infinite sequence of binary outputs. For each execution of the procedure shared__coin(r)
with r € N, all correct processes output b with probability at least p, for any value b € {0,1}.

The pseudo-code for our shared coin is presented in Algorithm 1. Our protocol is composed
of two phases of messages passing. Each process first samples the VRF with its private key
and the protocol’s argument in order to generate a random initial value. For brevity, we
denote by V RF; the VRF with p;’s private key. Using a VRF to generate a random initial
value effectively weakens the adversary as Byzantine processes can neither choose their initial
values nor equivocate. If a Byzantine process would try to act maliciously, the VRF proof
would easily expose it and its message would be ignored.

In each phase of the protocol, each process sends one value to every other process. The
receiver validates the received values using the VRF proofs, which are sent along with
the values. We omit the proof validation from the code for clarity. After two phases of
communication, each process chooses the minimum value it received in the second phase and
outputs its least significant bit. We follow the concept of a common core, as presented by
Attiya and Welch for the crash failure model [6], and argue that if a core of f + 1 correct
processes hold the global minimum value at the end of phase 1, then by the end of the

16

Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

following phase all processes receive this value. We exploit the € parameter in our resilience
definition to bound the number of values held by f + 1 correct processes. We show that
this number is linear in n and hence with a constant positive probability, by the end of the
second phase, all correct processes receive the global minimum among the VRF outputs and
therefore produce the same output.

Algorithm 1 Protocol shared__coin(r): code for process p;

1: Initially first-set, second-set = ()
2: vV; VRFZ(’I“)
: send (FIRST, v;) to all processes

w

: upon receiving (FIRST,v;) with valid v; from p; do
if v; <wv; then v; < v;
first-set < first-setU {j}
when |first-set| = n — f for the first time
send (SECOND, v;) to all processes

9: upon receiving (SECOND, v;) with valid v; from p; do

10: if v; <wv; then v; < v;

11: second-set < second-set U {5}

12: when |second-set| = n — f for the first time
13: return LSB(v;)

We now prove that the shared coin has a constant success rate. We say that a value v is
common if at least f 4 1 correct processes receive v by the end of phase 1. Denote by ¢ be
the number of different common values. The next two lemmas give a lower bound on ¢ and
on the probability that the global minimum among the VRF outputs is common.

95,n

» Lemma 3. In Algorithm 1, c > 5n.

Proof. In a given run of the algorithm, define a table T with n rows and n columns, where
for each correct process p; and each 0 < j <n —1, T[i,j] = 1 iff p; receives (FIRST,v) from
p; before sending the second message in line 8. Each row of a correct process contains exactly
n — f ones since it waits for n — f (FIRST, v) messages (line 7). Each row of a faulty process
is arbitrarily filled with n — f ones and f zeros. Thus, the total number of ones in the table
is n(n — f) and the total number of zeros is nf. Let k be the number of columns with at
least 2f + 1 ones. Because each column represents a value and out of the 2f + 1 ones at least
f + 1 represent correct processes that receive this value, ¢ > k. Denote by = the number of
ones in the remaining columns. Because each column has at most n ones we get:

x>n(n—f)—kn. (1)
And because the remaining columns have at most 2f ones:

x <2f(n—k). (2)

Combining (1), (2) we get:

2f(n—k)>n(n—f)—kn

2fn —2fk >n’® — fn—kn

17

S. Cohen, I. Keidar and A. Spiegelman

(n—2f)k >n*—3fn

1_

3 — €)n we get:

Because f = (

n(n—3(%—e)n)_n(1—1+3e)_ 9e
n—2(3—emn B 1—-2+2€ 1+ 6e

c>k> n, as required.

|
Let Upin = mirﬁ {VRF;(r)}. We prove that with a constant probability, it is common.
pi€

» Lemma 4. Problvy,, is common] > £ — 1 +e.

Proof. Notice that we assume that the invocation of shared_coin(r) by each process is
causally independent of its progress at other processes. Hence, for any two processes p;, p;,
the messages (FIRST,v;), (FIRST,v;) are causally concurrent. Thus, due to our delayed-
adaptive adversary definition, these messages are scheduled by the adversary regardless of
their content, namely their VRF random values. Notice that the adversary can corrupt
processes before they initially send their VRF values. Since the adversary cannot predict the
VRF outputs of the processes, the probability that the process holding v;,;,, is corrupted before
sending its FIRST messages is at most % The adversary is oblivious to the correct processes
VRF values when it schedules their first phase messages. Therefore, each of them has the

)

same probability to become common. Since at most f common values originate at Byzantine

processes, this probability is at least :L:J} We conclude that v, is common with probability
- (3=e)nyc=(5-¢) —(3-¢))
ot Teast (1~ £)326 = (1~ U5 =Gt — 3y gt o e
<

We next observe that if v, is common, then it is shared by all processes.
» Lemma 5. If v, is common then each correct process holds vimin at the end of phase 2.

Proof. Since v, is common, at least f 4 1 correct processes receive it by the end of phase
1 and update their local values to v,,;,. During the second phase, each correct process hears
from n — f processes. This means that it hears from at least one correct process that has
updated its value to v, and sent it. <

» Lemma 6. The coin’s success rate is at least %

Proof. We bound the probability that all correct processes output b € {0,1} as follows:
Problall correct processes output b | > Problall correct processes have the same v; at the

end of phase 2 and its LSB is b] > Prob[all correct processes have v; = Uy at the end of

phase 2 and its LSB is b] = % - Prob[all correct processes have v; = vy, at the end of phase

Lemma 5 Lemma 4 Lemma 3

1 . 1/c 1 18€%4+24e—1
2] > 5-Problvmi, is common] > (£ —z24¢€) > ﬁ.

<«

» Remark 7. Notice that for € = % (i.e., f = 0) it holds that the coin’s success rate is % and
we get a perfect fair coin.

We have shown a bound on the coin’s success rate in terms of €. Since ¢ > 0.109, the
coin’s success rate is a positive constant. We next prove that the coin ensures liveness.

18

Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

» Lemma 8. If all correct processes invoke Algorithm 1 then all correct processes return.

Proof. All correct processes send their messages in the first phase. As up to f processes
may be faulty, each correct process eventually receives n — f (FIRST, z) messages and sends
a message in the second phase. As n — f correct processes send their messages, each correct
process eventually receives n — f (SECOND, z) messages and returns. <

From Lemma 6 and Lemma 8 we conclude:

L 18¢2424e—1

» Theorem 9. Algorithm 1 implements a shared coin with success rate at leas 6(1360)

Complexity. In each shared coin instance all correct processes send two messages to all
other processes. Each of these messages contains one VRF output (including a value and a
proof), in addition to a constant number of bits that identify the message’s type. Therefore,
each message’s size is a constant number of words and the total word complexity of a shared
coin instance is O(n?).

We have presented a new shared coin in the asynchronous model that uses a VRF. This
coin can be incorporated into the Byzantine Agreement algorithm of Mostefaoui et al. [30],
to yield an asynchronous binary Byzantine Agreement with resilience f = (1 — €)n, a word

3
complexity of O(n?), and O(1) expected time.

5 Committees

5.1 Validated committee sampling

With the aim of reducing the number of messages and achieving sub-quadratic word com-
plexity, it is common to avoid all-to-all communication phases [20, 22]. Instead, a subset
of processes is sampled to a committee and only processes elected to the committee send
messages. As committees are randomly sampled, preventing the adversary from corrupting
their members, each committee member cannot predict the next committee sample and send
its message to all other processes. Potentially, if the committee is sufficiently small, this
technique allow committee-based protocols to result in sub-quadratic word complexity.

Using VRF5s, it is possible to implement validated committee sampling, which is a primitive
that allows processes to elect committees without communication and later prove their election.
It provides every process p; with a private function sample; (s, \), which gets a string s and
a threshold 1 < A < n and returns a tuple (v;, 0;), where v; € {true, false} and o; is a proof
that v; = sample;(s,). If v; = true we say that p; is sampled to the committee for s and
A. The primitive ensures that p; is sampled with probability % In addition, there is a
public (known to all) function, committee-val(s, A, i, 0;), which gets a string s, a threshold A,
a process identification ¢ and a proof o;, and returns true or false.

Consider a string s. For every 4, 1 <14 < n, let (v;,0;) be the return value of sample,(s, \).
The following is satisfied for every p;:

committee-val(s, \, i, 0;) = v;.

If p; is correct, then it is infeasible for the adversary to compute sample; (s, A).

It is infeasible for the adversary to find (v,0) s.t. v # v; and committee-val(s, A, i,0) =
true.

We refer to the set of processes sampled to the committee for s and A as C(s, A). In this

paper we set A to 8Inn. Let d be a parameter of the system such that max{%, 0.0362} < d <

5= 3%\ Our committee-based protocols can no longer wait for n — f processes. Instead, they

19

S. Cohen, I. Keidar and A. Spiegelman

wait for W £ [(% + 3d))\-‘ processes. We show that whp at least W processes will be correct
in each committee sample and hence waiting for this number does not compromise liveness. In
addition, instead of assuming f Byzantine processes, our committee-based protocols assume
that whp the number of Byzantine processes in each committee is at most B = L(% — d))\J.
The following claim is proven in Appendix A using Chernoff bounds.

> Claim 10. For a string s and A = const - Inn the following hold with high probability:

(S1) |C(s,A\)] < (1 +a)A

(S2) |C(s,\)] > (1 =)\

(S3) At least W processes in C(s, \) are correct.
(S4) At most B processes in C(s, A) are Byzantine.

If a protocol uses a constant number of committees, then with high probability, Claim 10
holds for all of them. If, however, a protocol uses a polynomial number of committees then
it does not guarantee the properties of this claim. The following corollaries are derived from
Claim 10 and are used to ensure the safety and liveness properties of our protocols that use
committees (a full proof is in Appendix A). Intuitively, S3 allows the protocol to wait for W
messages without forgoing liveness. Property S5 below shows that if two processes wait for
sets P; and P, of this size, then they hear from at least B + 1 common processes of which,
by S4, at least one is correct.

» Corollary 11 (S5). Consider C(s,\) for some string s and some A = const - Inn and two
sets Pl,PQ (- C(S,)\) s.t |P1‘ = |P2| =W. Then, |P1 ﬂP2| 2 B+1

The following property is used to show that if B + 1 correct processes hold some value,
and some correct process waits for messages from W processes, then it hears from at least
one correct process that holds this value.

» Corollary 12 (S6). Consider C(s,A) for some string s and some A = const - Inn and two
sets Pl,PQ C 0(87)\) s.t |P1‘ =B+1 and |P2‘ =W. Then, |P1 ﬂPg\ > 1.

5.2 WHP Coin

We now employ committee sampling to reduce the word complexity of our shared coin. Our
new protocol is called whp_ coin. As before, we assume that for every r € N, the invocation
of whp__coin(r) by some process p is causally independent of its progress at other processes.
We now define the WHP coin abstraction:

» Definition 13 (WHP Coin). A WHP coin with success rate p is a shared object exposing
whp__coin(r), r € N at each process. If all correct processes invoke whp__coin(r) then, whp
(1) all correct processes return, and (2) all of them output the same value b with probability
at least p, for any value b € {0,1}.

The whp__coin protocol is presented in Algorithm 2. It samples two committees, one for
each communication step. In each step, only the processes that are sampled to the committee
send messages. However, since the committee samples are unpredictable, messages are sent
to all processes. With committees, processes can no longer wait for n — f messages. Instead
they wait for W messages. Since a constant number of committees is sampled in the protocol,
Claim 10 holds for all of them and by S3, all processes receive W messages, ensuring liveness.

In Appendix B we adapt the coin’s correctness proof given in Section 4 to the committee-
based protocol, proving the following theorem:

20

10 Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

Algorithm 2 Protocol whp_ coin(r): code for process p;

1: Initially first-set, second-set = 0, v; = oo
2: if sample,(FIRST, \) = true then

3: Vi VRFl(T)

4: send (FIRST,v;) to all processes

5: upon receiving (FIRST,v;) with valid v;

from validly sampled p; do
6 if sample;(SECOND, A) then
7: if v; < v; then v; < v,
8 first-set < first-set U{j}
9 when |first-set| = W for the first time
10: send (SECOND, v;)) to all processes

11: upon receiving (SECOND,v;) with valid v;
from validly sampled p; do

12: if v; <wv; then v; < v;

13: second-set < second-set U{j}

14: when |second-set| = W for the first time
15: return LSB(v;)

» Theorem 14. Algorithm 2 implements a WHP coin with a constant success rate.

Complexity. In each whp_ coin instance using committees all correct processes that
are sampled to the two committees (lines 2,6) send messages to all other processes. Each of
these messages contains a VRF output (including a value and a proof), a VRF proof of the
sender’s election to the committe and a constant number of bits that identify the type of
message that is sent. Therefore, each message’s size is a constant number of words and the
total word complexity of a WHP coin instance is O(nC') where C is the number of processes
that are sampled to the committees. Since each process is sampled to a committee with
probability %, we get a word complexity of O(nA) = O(nlogn) = 6(71) in expectation.

6 Asynchronous sub-quadratic Byzantine Agreement

We adapt the Byzantine Agreement algorithm of Mostefaoui et al. [30] to work with commit-
tees. Our protocol leverages an approver abstraction, which we implement in Section 6.1
and then integrate it into a Byzantine Agreement protocol in Section 6.2.

6.1 Approver abstraction

The approver abstraction is an adaptation of the Synchronized Binary-Value Broadcast
(SBV-broadcast) primitive in [30]. It provides processes with the procedure approve(v), which
takes a value v as an input and returns a set of values.

» Assumption 1. Correct processes invoke the approver with at most 2 different values.
Under this assumption, an approver satisfies the following;:

» Definition 15 (Approver). In an approver instance the following properties hold whp:

21

S. Cohen, I. Keidar and A. Spiegelman

Validity. If all correct processes invoke approve(v) then the only possible return value of
correct processes is {v}.

Graded Agreement. If a correct process p; returns {v} and another correct process p;
returns {w} then v = w.

Termination. If all correct processes invoke approve then approve returns with a non-empty
set at all of them.

Our approver uses different committees for different message types, as illustrated in Fig. 1.
Importantly, the protocol satisfies the so-called process replaceability [20] property, whereby
a correct process selected for a committee C' broadcasts at most one message in its role as a
member of C. Thus, our delayed-adaptive adversary can learn of a process’s membership in
a committee only after that process ceases to partake in the committee. This allows us to
leverage the sampling analysis in the previous section. For clarity of the presentation, we
discuss the algorithm here under the assumption that properties S1-S6 hold for all sampled
committees. As shown above, these hold whp for each committee, and the algorithm employs
a constant number of committees, so they hold for all of them whp.

C(init,A)

00.. o..oee ... @&
7/ NN

C(echo v, 1) C(echo v,,A)

[oo [.../@/QQJ

C(ok,)

Loee ...
i~

v

A0

Figure 1 Committees sampled in Algorithm 3.

The approver’s pseudo-code appears in Algorithm 3. It consists of three phases — init,
echo, and ok. In each phase, committee members broadcast to all processes. Messages are
validated to originate from legitimate committee members using the committee-val primitive;
this validation is omitted from the pseudo-code for clarity. In the first phase, each init
committee member broadcasts its input value to all processes.

The role of the echo phase is to “boost” values sent by sufficiently many processes in the
init phase, and make sure that all correct processes receive them. “Sufficiently many” here
means at least B + 1, which by S4 includes at least one correct process. Ensuring process
replaceability in the echo phase is a bit tricky, since committee members must echo every
value they receive from least B + 1 processes, and there might be two such values. (Recall
that we assume that correct processes invoke the protocol with at most two different values,
so there cannot be more than two values that exceed this threshold). To ensure that each
committee member broadcasts at most once, we sample a different committee for each value.
That is, the value v is part of the string passed to the sample function for this phase.

When a member of the ok committee receives (ECHO, v) messages from W different

members of the same echo committee for the first time, it broadcasts an (OK,v) message.
Note that the process sends an ok message only for the first value that exceeds this threshold.

An (0K, v) message includes, as proof of its validity, W signed (ECHO, v) messages. Again,

22

11

12

Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

the proof and its validation are omitted from the pseudo-code for clarity. Once a correct
process receives W valid OK messages, it returns the set of values in these messages.

Algorithm 3 Protocol approve(v;): code for process p;

1: if sample;(INIT,) = true then broadcast (INIT,v;)

2: upon receiving (INIT,v) from B + 1 different processes do
if sample;((ECHO,v), \) = true then broadcast (ECHO, v)

w

4: upon receiving (ECHO, v) from W different processes do
5: if sample;(OK, \) = true A haven’t sent any (OK, *) message then
6: broadcast (OK,v)

7: upon receiving (0K,) from W different processes do
8: return the set of values received in these messages

We next prove that Algorithm 3 implements an approver.

» Lemma 16 (Validity). If all correct processes invoke approve(v) then the only possible
return value of correct processes is {v} whp.

Proof. By Claim 10 S4 holds whp for the four sampled committees. It remains to show
that S4 implies validity. Since by S4 the number of Byzantine processes sampled to the init
committee in line 1 is at most B, no process receives B + 1 messages with a value w # v.
Thus, no correct process echoes (ECHO,w) in line 3. Because the number of Byzantine
processes in C'((ECHO, w), \) in line 3 is also at most B, no correct process receives more than
B (ECHO, w) messages. As a result, since B < W, no (OK, w) message is sent by any correct
process. Since ok messages carry proofs, no Byzantine process can send a valid (0K, w) either.
Therefore, the only possible value in the ok messages is v, and no other value is returned. <«

» Lemma 17 (Graded Agreement). If a correct process p; returns {v} and another correct
process p; returns {w} then v =w whp.

Proof. By Claim 10 and Corollary 11, S4 and S5 hold whp for the four sampled committees.
We show that S4 and S5 imply graded agreement. Assume p; returns {v} and p; returns
{w}. Then p; receives W (OK, v) messages and p; receives W (0K, w) messages. By S5, two
sets of size W intersect by at least (% — d)A + 1 processes. Hence, since by S4 there are at
most B Byzantine processes in the ok committee, there is at least one correct process py
whose ok message is received by both p; and p; whp. It follows that pj sends (OK,v) and
(0K, w). Since every correct process sends at most one ok message (line 5), v = w. <

» Lemma 18 (Termination). If all correct processes invoke approve then at every correct
process approve returns with a non-empty set whyp.

Proof. By Claim 10 S3 holds whp. We show that S3 implies termination. Because all correct
processes invoke approve, every correct init committee member in line 1 sends (INIT,v;).
Notice that %W > (% — d)A > B. Hence, since the number of correct processes in the init
committee is at least W (S3) and correct processes may send at most two different initial
values (Assumption 1), one of them is sent by at least B + 1 correct processes. Denote this

23

S. Cohen, I. Keidar and A. Spiegelman

value by v. Every correct process receives this value from B+ 1 processes, and if it is sampled
to C((ECHO, v), A) in line 3 then it sends it to all other processes. Since C'({(ECHO, v}, \) also

has at least W correct processes (S3), every correct process p receives W (ECHO, v) messages.

If p is sampled to the ok committee in line 5 and at this point p has not yet sent an (0K, *)
message, it sends one. Since there are at least W correct processes that are sampled to the ok
committee (S3) and they all send OK messages (possibly for different values), every correct
process receives W OK messages and returns the non-empty set of approved values. <

From Lemmas 16,17,18, we conclude the following theorem:
» Theorem 19. Algorithm 3 implements an approver.

Complexity. In each approver instance correct processes that are sampled to the
four committees (lines 1,3,5) send messages to all other processes. The committee size is
O(A\) = O(logn) whp. Messages contain values, VRF proofs of the sender’s election to the
committee, signatures of O(\) committee members, and a constant number of bits that
identify the type of message that is sent. Therefore, each message’s size is at most O(\) words
and the total word complexity of a shared coin instance is O(nA2) = O(nlog?n) = O(n) in
expectation. The A% appears in the expression due to the signatures of O()\) processes sent

along the ok messages.

6.2 Byzantine Agreement WHP

Our next step is solving Byzantine Agreement whp, formally defined as follows:

» Definition 20 (Byzantine Agreement WHP). In Byzantine Agreement WHP, each correct
process p; € 11 proposes a binary input value v; and decide on an output value decision; s.t.
with high probability the following properties hold:

Validity. If all correct processes propose the same value v, then any correct process that
decides, decides v.

Agreement. No two correct processes decide differently.

Termination. Every correct process eventually decides.

We present the pseudo-code for our algorithm in Algorithm 4. Our protocol executes in
rounds. Each round consists of two approver invocations and one call to the WHP coin. Again,
we discuss the algorithm assuming S1-S6 hold. We will argue that the algorithm decides in
a constant number of rounds whp, and so these properties hold for all the committees it
uses. The local variable est; holds p;’s current estimate of the decision value. The variable
decision; holds p;’s irrevocable decision. It is initialized to L and set to a value in {0, 1} at
most once. Every process p; begins by setting est; to hold its initial value. At the beginning
of each round processes execute the approver with their est values. If they return a singleton
{v}, they choose to invoke the next approver with v as their proposal and otherwise they
invoke the next approver with L. By the approver’s graded agreement property, different
processes do not return different singletons. Thus, at most two different values (L and one in
{0,1}) are given as an input by correct processes to the next approver, satisfying Assumption
1.

At this point, after all correct processes have chosen their proposals, they all invoke the
WHP coin in line 8 in order to select a fall-back value. Notice that executing the WHP coin
protocol after proposals have been set prevents the adversary from biasing proposals based
on the coin flip. Then, in in line 9, all processes invoke the approver with their proposals. If

24

13

14

Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

a process does not receive L in its return set, it can safely decide the value it received. It
does so by updating its decision variable in line 13. If it receives some value other than 1 it
adopts it to be its estimated value (line 18), whereas if it receives only L, it adopts the coin
flip (line 16). If all processes receive L in line 4 then the probability that they all adopt the
same value is at least 2p, where p is the coin’s success rate. If some processes receive v, then
the probability that all the processes that adopt the coin flip adopt v is at least p. With high
probability, after a constant number of rounds, all correct processes have the same estimated
value. By validity of the approver, once they all have common estimate, they decide upon it
within 1 round.

Algorithm 4 Protocol Byzantine Agreement(v;): code for process p;

1: est; < v; 9: props < approve(propose;)

2: decision; + L 10: if props = {v} for some v # L then
11: est; < v

3: forr=0,1,... do 12: if decision; = 1 then

4 vals < approve(est;) 13: decision; < v

5: if vals = {v} for some v then 14: else

6 propose; <~ v 15: if props = {L} then

7 otherwise propose; <+ L 16: est; < ¢
17: else > props = {v, L}

8: ¢ < whp_ coin(r) 18: est; < v

We now prove our main theorem:

» Theorem 21. Algorithm 4 when using an approver (Definition 15) and a WHP coin
(Definition 13) solves Byzantine Agreement whp (Definition 20).

We first show that Algorithm 4 satisfies the approver and WHP coin primitives’ as-
sumptions whp. Proving this allows us to use their properties while proving Theorem
21.

» Lemma 22. For every round r of Algorithm 4 the following hold:

1. All correct processes invoke approve with at most 2 different values.

2. The invocation of whp__coin(r) by a correct process p is causally independent of its progress
at other processes.

Proof. 1. It is easy to see, by induction on the number of rounds, that since the processes’

inputs are binary and we use a binary coin, the est of all processes is in {0,1} at the
beginning of each round. Hence, the approver in line 4 is invoked with at most two
different values. Due to its graded agreement property, all processes that update their
propose to v # L in line 6 update it to the same value whp. Thus, whp, in line 9 approver
is invoked with either v or L.
2. Correct processes call whp__coin(r) without waiting for indication that other processes
have done so.
<

Next, we show that for any given round of the algorithm, (1) whp all processes complete
this round, and (2) with a constant probability, they all have the same estimate value by its
end.

25

S. Cohen, I. Keidar and A. Spiegelman

» Lemma 23. If all correct processes begin round r of Algorithm 4 then whp:

1. All correct processes complete round r, i.e. they’re not blocked during round r.

2. With probability greater than p, where p is the success rate of the WHP coin, all correct
processes have the same est value at the end of round r.

Proof. First, if all correct processes begin round r then they all invoke the approver in line
4. Their invocation returns whp so they all invoke the coin in line 8, and so it returns and
all invoke approve in line 9, and so it also returns, proving (1). To show (2), consider the
possible scenarios with respect to the approver’s return value:
All correct processes return singletons in line 4:
By the approver’s graded agreement, whp they return {v} with the same value v. Hence,
all correct processes update their propose to v. Then, they all execute approve(v) in line
9, and by validity, they all return {v} whp. In this case they all update est < v.
All correct processes return {0, 1} in line 4:
All correct processes update their propose value to L. Then, they all execute approve(.L)
in line 9, and by validity, they return {1} whp. In this case, all correct processes then
update their estimate value to the coin flip (line 16). With probability at least 2p all
correct processes toss the same v € {0, 1}.
Some, but not all correct processes return singletons in line 4:
By graded agreement, all singletons hold the same value v. Thus, all correct processes
propose v or L and by validity return {v}, {v, L}, or {L} in line 9. We examine two
possible complementary sub-cases:

If some correct process returns {v} in line 9: By approver’s graded agreement, no
correct process returns {_L} in line 9, whp. Thus, whp, all correct processes update
their estimate value to v (in line 11 or 18).

If no correct process return {v} in line 9: All correct processes returns {v, L} or { L}
in line 9. All correct processes either update their estimate value to the coin flip of the
WHP coin (line 16) or to v (line 18). Since the value v is determined before tossing
the coin, the adversary cannot bias v after viewing the coin flip and with probability
at least p all correct processes that adopt the coin’s value toss v.

In all cases, with probability greater than p all correct processes have the same est value
at the end of r, whp. <

The following lemmas indicate that the Byzantine Agreement whp properties are satisfied,
which completes the proof of Theorem 21.

» Lemma 24. (Validity) If at the beginning of round r of Algorithm 4 all correct processes
have the same estimate value v, then whp any correct process that has not decided before
decides v in round r.

Proof. If all correct processes start round r then by Lemma 23 they all complete round r.
Since they all being with the same estimate value v, they all execute approve(v) in line 4.

Hence, by approver’s validity and termination, whp they all return the non-empty set {v}
and update their propose values to v. Then, they all execute approve(v) for the second time
in line 9, and due to the same reason, they all return {v} whp. Any correct process that has
not decided before decides v in line 13. <

» Lemma 25. (Termination) Every correct process decides whp.

26

15

16

Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

Proof. By Lemma 23, for every round r of Algorithm 4, with probability greater than p,
where p is the success rate of the WHP coin, all correct processes have the same est value at
the end of » whp. Hence, by Lemma 24, with probability greater than p, all correct processes
decide by round r + 1 whp. It follows that the expected number of rounds until all processes
decide is bounded by %, which is constant. Thus, by Chebyshev’s inequality, whp all correct
processes decide within a constant number of rounds. <

» Lemma 26. (Agreement) No two correct processes decide different values whp.

Proof. Let r be the first round in which some process p; decides on some value v € {0,1}.
Thus, p;’s invocation to approver in line 9 of round r returns {v}. If another correct process
p; decides w in round 7 then its approver call in line 9 of round r returns {w}. By approver’s
graded agreement, v = w whp. Consider a correct process pi that does not decide in round
r. By the definition of r, p; hasn’t decided in any round ' < r. By approver’s graded
agreement, whp, py returns {v, L} in line 9 of round r, and p; updates its est; value to v
in line 18. It follows that whp all correct processes have v as their estimate value at the
beginning of round r + 1. By Lemma 24, every correct process that has not decided in round
r decides v in round r + 1 whp. <

Complexity. In each round of the protocol, all correct processes invoke two approver
calls and one WHP coin instance. Due to the constant success rate of the WHP coin,
the expected number of rounds before all correct processes decide is constant. Thus, due
to the word complexity of the WHP coin and approver, the expected word complexity is
O(nlog?n) = O(n) and the time complexity is O(1) in expectation.

7 Conclusions and Future Directions

We have presented the first sub-quadratic asynchronous Byzantine Agreement algorithm. To
construct the algorithm, we introduced two techniques. First, we presented a shared coin
algorithm that requires a trusted PKI and uses VRFs. Second, we formalized VRF-based
committee sampling in the asynchronous model for the first time.

Our algorithm solves Byzantine Agreement with high probability. It would be interesting
to understand whether some of the problem’s properties can be satisfied with probability 1,
while keeping the sub-quadratic communication cost. In addition, in order to achieve the
constant success rate of the coin and guarantee the committees’ properties, we bounded €
from below by a constant. This bound prevented us from achieving optimal resilience. The
question whether it is possible to relax this bound to allow better resilience remains open.

Acknowledgements

We thank Ittai Abraham, Dahlia Malkhi, Kartik Nayak and Ling Ren for insightful initial
discussions.

—— References

1 Ittai Abraham, TH Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and
Elaine Shi. Communication complexity of byzantine agreement, revisited. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, pages 317-326, 2019.

2 Ittai Abraham, Guy Golan-Gueta, and Dahlia Malkhi. Hot-stuff the linear, optimal-resilience,
one-message bft devil. CoRR, abs/1803.05069, 2018.

27

S. Cohen, I. Keidar and A. Spiegelman

10

11

12

13

14

15

16

17

18

19

20

21

22

Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated
asynchronous byzantine agreement. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 337-346, 2019.

Mohamad Ahmadi, Abdolhamid Ghodselahi, Fabian Kuhn, and Anisur Rahaman Molla. The
cost of global broadcast in dynamic radio networks. Theoretical Computer Science, 806:363-387,
2020.

Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich, Ronen Tamari,
and David Yakira. Helix: A scalable and fair consensus algorithm resistant to ordering
manipulation. TACR Cryptology ePrint Archive, 2018:863, 2018.

Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and
advanced topics, volume 19. John Wiley & Sons, 2004.

Baruch Awerbuch and Christian Scheideler. A denial-of-service resistant dht. In International
Symposium on Distributed Computing, pages 33—47. Springer, 2007.

Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, Frangois Garillot, Zekun Li,
Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino. State machine replication
in the libra blockchain. The Libra Assn., Tech. Rep, 2019.

Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols. In Proceedings of the second annual ACM symposium on
Principles of distributed computing, pages 27-30. ACM, 1983.

Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine
agreement with subquadratic communication. Cryptology ePrint Archive, Report 2020/851,
2020.

Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130-143, 1987.

Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Proceedings of the second
annual ACM symposium on Principles of distributed computing, pages 12-26. ACM, 1983.
Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in Constantinople:
Practical asynchronous byzantine agreement using cryptography. Journal of Cryptology,
18(3):219-246, 2005.

Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In STOC, volume 93, pages 42-51. Citeseer, 1993.

Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. Algorand agreement: Super
fast and partition resilient byzantine agreement. TACR Cryptology ePrint Archive, 2018:377,
2018.

Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs
and keys. In International Workshop on Public Key Cryptography, pages 416—431. Springer,
2005.

Danny Dolev and Riidiger Reischuk. Bounds on information exchange for byzantine agreement.
J. ACM, 32(1):191-204, January 1985.

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374-382, 1985.
Matthew Franklin and Haibin Zhang. Unique ring signatures: A practical construction.
In International Conference on Financial Cryptography and Data Security, pages 162-170.
Springer, 2013.

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 51-68, 2017.

Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology overview series,
consensus system. arXiv preprint arXiv:1805.04548, 2018.

Valerie King and Jared Saia. Breaking the O(n?) bit barrier: scalable byzantine agreement
with an adaptive adversary. Journal of the ACM (JACM), 58(4):1-24, 2011.

28

17

18

Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

23

24

25

26

27

28

29

30

31

32

33

34

35
36

Valerie King and Jared Saia. Byzantine agreement in polynomial expected time. In Proceedings
of the forty-fifth annual ACM symposium on Theory of computing, pages 401-410. ACM, 2013.
Marek Klonowski, Dariusz R Kowalski, and Jarostaw Mirek. Ordered and delayed adversaries
and how to work against them on a shared channel. Distributed Computing, 32(5):379-403,
2019.

Jae Kwon. Tendermint: Consensus without mining. Draft v. 0.6, fall, 1(11), 2014.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558-565, July 1978.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382-401, July 1982.

Silvio Micali. Very simple and efficient byzantine agreement. In Christos H. Papadimitriou,
editor, 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January
9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs, pages 6:1-6:1. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2017. doi:10.4230/LIPIcs.ITCS.2017.6.

Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In Foundations
of Computer Science, 1999. 40th Annual Symposium on, pages 120-130. IEEE, 1999.
Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous
binary byzantine consensus with t < n/3, O(n?) messages, and O(1) expected time. Journal
of the ACM (JACM), 62(4):31, 2015.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.

Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. Cogsworth: Byzantine
view synchronization. arXiv preprint arXiv:1909.05204, 2019.

Michael O Rabin. Randomized byzantine generals. In 24th Annual Symposium on Foundations
of Computer Science (sfcs 1983), pages 403-409. IEEE, 1983.

Peter Robinson, Christian Scheideler, and Alexander Setzer. Breaking the Q(y/n) barrier: Fast
consensus under a late adversary. In 30th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2018, pages 173-182. ACM New York, 2018.

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612-613, 1979.
Alexander Spiegelman. In search for an optimal authenticated byzantine agreement. In 35th
International Symposium on Distributed Computing, 2021.

29

S. Cohen, I. Keidar and A. Spiegelman

Appendix A Sampling proofs

> Claim 27. For a string s and A = const - Inn the following hold with high probability:

(S1) |C(s,N)] < (1 +ad)A.

(S2) |C(s,A\)| > (1 —a)\.

(S3) At least W processes in C(s, \) are correct.
(S4) At most B processes in C(s, A) are Byzantine.

Proof. Recall that d is a parameter of the system such that max{},0.0362} < d < § — 3.
In order to prove these properties we use two Chernoff bounds:
Suppose X1, ..., X,, are independent random variables taking values in {0,1}. Let X
denote their sum and let E[X] denote the sum’s expected value.

_5%2B[X]
52 B[X]
VO<§<1: PriX<(1-0)E[X]||<e 2 (4)

» Lemma 28 (S1). |C(s,A)| < (1 + d)A whp.

Proof. Let X be a random variable that represents the number of processes that are sampled
to C(s,A). X ~ Bin(n, %ln")), thus E[X] = const - Inn.
Placing 6 =d > 0 in 3 we get:

d%const-lnn

PriX > (1+d)const-lnn] <e” 2+

Denote by c¢; the constant %. We get:

Pr[X > (1+d)const -Inn] < e~ 1nm,

Thus,

1 1
PriX < (1+d)const-Inn] = Pr[X < (1+d)A\] >1— et = 1-— e
» Lemma 29 (S2). |C(s,\)| > (1 —d)\ whp.

Proof. Let X be a random variable that represents the number of processes that are sampled
to C(s,\). X ~ Bin(n, €rstinn) thus E[X] = const - lnn.

n

Placing 0 = d it holds that 0 < § < 1 in 4 and we get:

d%const-lnn
2

Pr(X > (1 —d)const-Inn] < e~

Denote by co the constant % We get:

Pr[X > (1 —d)const - Inn] < e~c2lnm,

30

19

20 Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

Thus,

PriX < (1—d)const-lnn] =Pr{X <(1—-d)A\] >1- . 1-

ec2 Inn nez :

» Lemma 30 (S3). At least W processes in C(s, \) are correct whp.

Proof. Let X be a random variable that represents the number of correct processes that
are sampled to C(s, A). X ~ Bin((3 + e)n, cnstdnn) thus B[X] = (2 + €)const - Inn. Let

2 ’ 2 ’ 2 1 2 2 1
; 1 . o §+d - §+d 1 §+3d+f _ §+e—§—3d—x
zi —1 3d+1x Notice that 1 e <1 and a2lso ,1 e = 1 T = T >
ﬁ%idj > 0. Hence, we can put § =1 — Sgii in (4) and get:
3 3
2.
244 9 (1——3;;)2(3+e)constlnn
53 3 €
PriXx<(1-(1- 32))(§+e)const~lnn] <e~ 2 ,
3
2 ’
9 i d 2 (1— 3;:’)2(2+e)constInn
2 I
PriX < (3)= +€)const - Inn] <e” 7 ,
3 + € 3
2 ’
9 (1— 3;;:)2(2+e)constlnn
3
Pr[X < (= +d)const-Inn] < e~ z
3
2.4
const-(1— 32+€)2(%+6)
Denote by c3 the constant 5 . We get:

2 . P
PriX < (§ +d')const - Inn] < e~nn,

Thus,

2 2 1 1
PriX > (§ +d')const - lnn] = Pr[X > (§ +d N >1———=1-

ecslnn nes :

To this point we’'ve proved that at least (% + d')\ processes in C(s, \) are correct whp. It
follows that at least (% +3d+ 1)A = (% + 3d)A\ + 1 processes in C(s,\) are correct whp.
As [(2 +3d)A] < (2 +3d)A + 1 we conclude that at least W = [(2 + 3d)A] processes in
C(s, A\) are correct whp.
<

» Lemma 31 (S4). At most B processes in C(s,\) are Byzantine whp.

Proof. Let X be a random variable that represents the number of Byzantine processes that
are sampled to C(s, A). X ~ Bin((3 — e)n, €ty thus F[X] = (1 — €)const - Inn.
Placing § = i_i > 01in (3) we get:

1_
3

(i;de)z(%—e)const-lnn
-

—d 1 .
PriX>(1+ ii)(g —€)const -Inn] < e e ,
-

31

S. Cohen, I. Keidar and A. Spiegelman

[CET)
L_d 1 a ggiﬁ*d)
PriXx > (3)(z —€)const - Inn] < e LR
3 € 3
(D2 st
1 e
)
PriX > (5 —d)const -lnn] <e A
const-i(eij>2
Denote by ¢4 the constant ———3-—"—. We get:
2+(¥)
1 —calnn
PriX > (5 —d)const - lnn] < e ",
Thus,
1 1 1 1
PriX < (g —d)const -Inn] = Pr[X < (g —d)A\>1—- cerlin = 1 ea
Since X must be an integer, it follows that X < B = _ % — d)/\J whp.
<
<

» Corollary 32 (S5). Consider C(s,\) for some string s and some A = const - lnn and two
sets Py, Py C C(s,) s.t |Py| = |Pe| =W. Then, |PPNPy| > B+1.

Proof. The set P, contains at most |C(s, A) \ P1| processes that aren’t in P;. By S1, and
since P; C C(s, \):

C(s M\ Py < (14 d)A—W = (1+d)A— [(g + 3d)A1 < (1+d)>\f(§+3d))\ _ (%fm)x.

The remaining processes in P, are also in Py, so

ARy > W — (% —2d)A = {(g + 3d))\-‘ —(%—Qd))\ > (§+3d))\—(% “2d)) = (L4500

3
Finally,
1 1 1 6
as requested. <

» Corollary 33 (S6). Consider C(s,\) for some string s and some A = const - Inn and two
sets Pi, Py C C(s,\) s.t|Pi|=B+1and |P| =W. Then, |PLN Pa| > 1.

Proof. The set P, contains at most |C(s, A) \ Py| processes that aren’t in P;. By S1, and
since P; C C(s, \):

1 1 2
[C(s, M)\P1| < (14+d)A—(B+1) = (1+d)A—({(3 - d)AJ +1) < (1+d)/\—((§—d)/\—1)—1 = (§+2d))\.
Therefore,
2 2 2 2 2 A
| Po|—|C (s, M\ Py| > Wf(§+2d))\ = (§ + 3d)\ 7(§+2d)>\ > (§ + 3d))\f(§+2d))\ =dX\ > 3= 1,
and so |P1 N Py| > 1, as requested. <

32

22

Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

Appendix B WHP Coin Proofs

In the committee-based protocol, a value v is common if at least B 4+ 1 correct processes in
C(SECOND, \) have v; = v at the end of phase 1. The next lemma adapts the lower bound of
Lemma 3 on the number of common values to the committee-based protocol.

d(11—3d)
1+9d A

» Lemma 34. In Algorithm 2 whp, ¢ >

Proof. Let n; = |C(FIRST, A)|, n2 = |C(SECOND, A)|. We define a table T with ny rows and
n1 columns. For each correct process p; € C(SECOND,\) and each 0 < j <mn; —1,T[i,j] =1
iff p; receives (FIRST,v) from p; € P; before sending the SECOND message in line 10. Each
row of a correct process contains exactly W ones since it waits for W (FIRST, v) messages
(line 9). Each row of a faulty process in C'(SECOND, A) is arbitrarily filled with W ones and
n1 — W zeros. Thus the total number of ones in the table is ny W and the total number
of zeros is ng(ny — W). Let k be the number of columns with at least 2B + 1 ones. Each
column represents a value sent by a process in C(FIRST, A). By S4, whp, at most B of the
processes that receive this value are Byzantine. Thus, whp, out of any 2B + 1 ones in each
of these columns, at least B 4+ 1 represent correct processes that receive this value and it
follows that ¢ > k.

Denote by x the number of ones in the remaining columns. Because each column has at
most ng ones we get:

2 2
z > noW — kng = no ’7(3 + 3d))\—‘ — kng > ng(g + 3d))\ — kno. (5)
And because the remaining columns have at most 2B ones:
1 1

Combining (1), (2) we get:
1 2
2(3 —d)A(n1 — k) > ng(g + 3d)A — kng

s — m(% —d) > nQ(g +3d)A— 2(% — d)my

F(ns — 2/\% —d) > A(nQ(g +3d) — 2(% ~dny)

k> A(n2(3 +3d) = 2(3 — d)my)
ng — 2)\(% — d)

By S2 for C(SECOND, \), whp n2 > (1 — d)A and we get:

AL = DAG +3d) —2(4 — d)ny)

k>
- T?Q*Q)\(%*d)

33

S. Cohen, I. Keidar and A. Spiegelman

By S1 for C(FIRST, A) and C'(SECOND, \), whp n1,ns < (1 + d)X and we get:

)\(1—d))\(§+3d)—2(%—d)(1+d))\] A[(1—d)(§+3d)—2(§—d)(1+d)
k2 1+ dr—2x1 —d) - 11d) 20 —d)

Finally, we get whp:

d(11 — 3d)

A
1+9d

c>k>
as required.
<

Let Umin = min {VRF;(r)}. Similiarly to Lemma 4, we prove that the probability
p; €C(FIRST,\)

that it is common is bounded by a constant, whp. Le., we show that Prob[vm, is common] >
const - g(n) where g(n) goes to 1 as n goes to infinity.

c—B

» Lemma 35. whp Prob[vmin is common] > ﬁ B

Proof. Notice that we assume that the invocation of whp_ coin(r) by every process is
causally independent of its progress at other processes. Hence, for any two processes
pi,pj € C(FIRST, A), the messages (FIRST, v;), (FIRST, v;) are causally concurrent. Thus, due
to our delayed-adaptive adversary definition, these messages are scheduled by the adversary
regardless of their content, namely their VRF random values. Notice that the adversary can
corrupt processes before they initially send their VRF values. By S4 there are at most B
Byzantine processes in C'(FIRST, A). Since the adversary cannot predict the VRF outputs, the
probability for a given process to be corrupted before sending its FIRST messages is at most
m. The adversary is oblivious to the correct processes’ VRF values when it schedules
their first phase messages. Therefore, each of them has the same probability to become
common. Since at most B common values are from Byzantine processes, this probability
We conclude that vy, is common with probability at least

By S1 and S2 we get that (1 — d)A < |C(FIRST, \)| < (1 +d)A

3 c—B
is at least W

B —B
(1- [C(FIRST,\) |) \C(FIRCST,)\)|—B'

whp.
Thus, whp, vpmin is common with probability at least (1 — ﬁ)ﬁ =(1-
I_(%fd)AJ) c—B > (1 _ (%_d))‘) c—B _ 2 . c—B
—adr /O+rdr—B = (A—dx) O+d)r—B = 30-d) (A+dr—B"
|

» Lemma 36. If v, is common then whp each correct process holds Vi, at the end of
phase 2.

Proof. Since v, is common, at least B 4+ 1 correct members of C'(SECOND, A) receive it
by the end of phase 1 and update their local values to v,,;,. During the second phase, each
correct process hears from W members of C'(SECOND, A) whp. By S6, this means that it hears
from at least one correct process that has updated its value to v,,;, and sent it whp. <

18d%+27d—1

» Lemma 37. Let p = 3(5+6d)(1—d)(1+94) -

rate p, whp.

Algorithm 2 implements a shared coin with success

34

23

24

Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

Proof. Denote n; = |C(FIRST, A)|. We bound whp the probability that all correct processes
output b € {0,1} as follows:

Problall correct processes output b] > Prob|all correct processes have the same v; at the
end of phase 2 and its LSB is b] > Problall correct processes have v; = v, at the end

Lemma 36
of phase 2 and its LSB is b] = I - Prob[all correct processes have v; = U] >
Lemma 35 Lemma 34 d1-3d) y p
1, g 1,_2 | _cB 1 . Tifod
5 - Problumin is common] 2 2 301-d) (+d)r—B 2 3(1-d) = (1+d)r—B
d(11-3d d(11-3d d?427d—
wAf I_(%de‘J 1 (1+9d)Af(%fd))‘ 1 AL 27+dz+73 5

1 — . 1.
3(1—d) (A+d)A—[(3—d)A] Z 3(1—d) ~ A+d)r—((T—d)x—1) — 3(1—d) = X(Z+2d)+1 = 3(1—d)
AL e or
AZ+2d)+x — 3(5+6d)(1—d)(149d)"

<«

We have shown a bound on the coin’s success rate whp. Since d > 0.0362, the coin’s
success rate is a positive constant whp. We next prove that the coin ensures liveness whp.

» Lemma 38. If all correct processes invoke Algorithm 2 then all correct processes return
whp.

Proof. All correct processes in C(FIRST, A) send their message in the first phase. At least
W of them are correct whp by S3. All correct processes in C'(SECOND, \) eventually receive
W (FIRST, z) messages whp and send a message in the second phase. As ,whp, again W
correct processes send their messages (by S3), each correct process eventually receives W
(SECOND, z) messages and returns whp. <

From Lemma 37 and Lemma 38 we conclude:

» Theorem 14. Algorithm 2 implements a WHP coin with a constant success rate.

35

2.2 Tame the Wild with Byzantine Linearizability: Reli-
able Broadcast, Snapshots, and Asset Transfer

Appears in the 35th International Symposium on Distributed Computing (DISC 2021).

36

Tame the Wild with Byzantine Linearizability:
Reliable Broadcast, Snapshots, and Asset Transfer
Shir Cohen =

Technion, Israel

Idit Keidar =

Technion, Israel

—— Abstract

We formalize Byzantine linearizability, a correctness condition that specifies whether a concurrent

object with a sequential specification is resilient against Byzantine failures. Using this definition, we
systematically study Byzantine-tolerant emulations of various objects from registers. We focus on
three useful objects— reliable broadcast, atomic snapshot, and asset transfer. We prove that there
exist n-process f-resilient Byzantine linearizable implementations of such objects from registers if
and only if f < 3.

2012 ACM Subject Classification Theory of computation — Concurrent algorithms

Keywords and phrases Byzantine linearizability, concurrent algorithms, snapshot, asset transfer

1 Introduction

Over the last decade, cryptocurrencies have taken the world by storm. The idea of a decen-
tralized bank, independent of personal motives has gained momentum, and cryptocurrencies
like Bitcoin [23], Ethereum [25], and Diem [8] now play a big part in the world’s economy.
At the core of most of these currencies lies the asset transfer problem. In this problem, there
are multiple accounts, operated by processes that wish to transfer assets between accounts.
This environment raises the need to tolerate the malicious behavior of processes that wish to
sabotage the system.

In this work, we consider the shared memory model that was somewhat neglected in
the Byzantine discussion. We believe that shared memory abstractions, implemented in
distributed settings, allow for an intuitive formulation of the services offered by blockchains
and similar decentralized tools. It is well-known that it is possible to implement reliable
read-write shared memory registers via message passing even if a fraction of the servers are
Byzantine [1, 21, 24, 19]. As a result, as long as the client processes using the service are
not malicious, any fault-tolerant object that can be constructed using registers can also be
implemented in the presence of Byzantine servers. However, it is not clear what can be done
with such objects when they are used by Byzantine client processes. In this work, we study
this question.

In Section 4 we define Byzantine linearizability, a correctness condition applicable to any
shared memory object with a sequential specification. Byzantine linearizability addresses
the usage of reliable shared memory abstractions by potentially Byzantine client processes.
We then systematically study the feasibility of implementing various Byzantine linearizable
shared memory objects from registers.

We observe that existing Byzantine fault-tolerant shared memory constructions [20, 22, 1]
in fact implement Byzantine linearizable registers. Such registers are the starting point of our
study. When trying to implement more complex objects (e.g., snapshots and asset transfer)
using registers, constructions that work in the crash-failure model no longer work when
Byzantine processes are involved, and new algorithms — or impossibility results — are needed.

As our first result, we prove in Section 5 that an asset transfer object used by Byzantine
client processes does not have a wait-free implementation, even when its API is reduced

37

Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

to support only transfer operations (without reading processes’ balances). Furthermore, it
cannot be implemented without a majority of correct processes constantly taking steps. Asset
transfer has wait-free implementations from both reliable broadcast [7] and snapshots [17]
(which we adapt to a Byzantine version) and thus the same lower bound applies to reliable
broadcast and snapshots as well.

In Section 6, we present a Byzantine linearizable reliable broadcast algorithm with
resilience f < 7, proving that, for this object, the resilience bound is tight. To do so, we
define a sequential specification of a reliable broadcast object. Briefly, the object exposes
broadcast and deliver operations and we require that deliver return messages previously
broadcast. We show that a Byzantine linearizable implementation of such an object satisfies
the classical (message-passing) definition [10]. Finally, in Section 7 we present a Byzantine
linearizable snapshot with the same resilience. In contrast, previous constructions of Byzantine
lattice agreement, which can be directly constructed from a snapshot [6], required 3f + 1
processes to tolerate f failures.

All in all, we establish a tight bound on the resilience of emulations of three useful shared
memory objects from registers. On the one hand, we show that it is impossible to obtain
wait-free solutions as in the non-Byzantine model, and on the other hand, unlike previous
snapshot and lattice agreement algorithms, our solutions do not require n > 3f. Taken
jointly, our results yield the following theorem:

» Theorem 1. In the Byzantine shared memory model, there exist n-process f-resilient
Byzantine linearizable implementations of reliable broadcast, snapshot, and asset transfer
objects from registers if and only if f < 5.

Although the construction of reliable registers in message passing systems requires n > 3 f
servers, our improved resilience applies to client processes, which are normally less reliable
than servers, particularly in the so-called permissioned model where servers are trusted and
clients are ephemeral.

In summary, we make the following contributions:

Formalizing Byzantine linearizability for any object with a sequential specification.
Proving that some of the most useful building blocks in distributed computing, such as
atomic snapshot and reliable broadcast, do not have f-resilient implementations from
SWMR registers when f > 5 processes are Byzantine.

Presenting Byzantine linearizable implementations of a reliable broadcast object and a
snapshot object with the optimal resilience.

2 Related Work

In [4] Aguilera et al. present a non-equivocating broadcast algorithm in shared memory.
This broadcast primitive is weaker than reliable broadcast — it does not guarantee that all
correct processes deliver the same messages, but rather that they do not deliver conflicting
messages. A newer version of their work [5], developed concurrently and independently of
our work!, also implements reliable broadcast with n > 2f 4 1, which is very similar to our
implementation. While the focus of their work is in the context of RDMA in the M&M
(message—and—memory) model, our work focuses on the classical shared memory model,
which can be emulated in classical message passing systems. While the algorithms are similar,

! Their work [5] was in fact published shortly after the initial publication of our results [14].

38

S. Cohen and |. Keidar

we formulate reliable broadcast as a shared memory object, with designated API method
signatures, which allows us to reason about the operation interval as needed for proving
(Byzantine) linearizability and for using this object in constructions of other shared memory
objects.

Given a reliable broadcast object, there are known implementations of lattice agree-
ment [16, 26], which resembles a snapshot object. However, these constructions require
n = 3f + 1 processes. In our work, we present both Byzantine linearizable reliable broadcast
and Byzantine snapshot, (from which Byzantine lattice agreement can be constructed [6]),
with resilience n = 2f + 1.

The asset transfer object we discuss in this paper was introduced by Guerraoui et
al. [17, 15]. Their work provides a formalization of the cryptocurrency definition [23]. The
highlight of their work is the observation that the asset transfer problem can be solved
without consensus. It is enough to maintain a partial order of transactions in the systems,
and in particular, every process can record its own transactions. They present a wait-free
linearizable implementation of asset transfer in crash-failure shared memory, taking advantage
of an atomic snapshot object. We show that we can use their solution, together with our
Byzantine snapshot, to solve Byzantine linearizable asset transfer with n = 2f 4 1.

In addition, Guerraoui et al. present a Byzantine-tolerant solution in the message passing
model. This algorithm utilizes reliable broadcast, where dependencies of transactions are
explicitly broadcast along with the transactions. This solution does not translate to a
Byzantine linearizable one, but rather to a sequentially consistent asset transfer object. In
particular, reads can return old (superseded) values, and transfers may fail due to outdated
balance reads.

Finally, recent work by Auvolat et al. [7] continues this line of work. They show that a
FIFO order property between each pair of processes is sufficient in order to solve the asset
transfer problem. This is because transfer operations can be executed once a process’s balance
becomes sufficient to perform a transaction and there is no need to wait for all causally
preceding transactions. However, as a result, their algorithm is not sequentially consistent,
or even causally consistent for that matter. For example, assume process ¢ maintains an
invariant that its balance is always at least 10, and performs a transfer with amount 5 after
another process deposits 5 into its account, increasing its balance to 15. Using the protocol
in [7], another process might observe i’s balance as 5 if it sees i’s outgoing transfer before the
causally preceding deposit. Because our solution is Byzantine linearizable, such anomalies
are prevented.

3 Model and Preliminaries

We study a distributed system in the shared memory model. Our system consists of a
well-known static set IT = {1,...,n} of asynchronous client processes. These processes have
access to some shared memory objects. In the shared memory model, all communication
between processes is done through the API exposed by the objects in the system: processes
invoke operations that in turn, return some response to the process. In this work, we assume
a reliable shared memory. (Previous works have presented constructions of such reliable
shared memory in the message passing model [1, 21, 24, 3, 19]). We further assume an
adversary that may adaptively corrupt up to f processes in the course of a run. When the
adversary corrupts a process, it is defined as Byzantine and may deviate arbitrarily from the
protocol. As long as a process is not corrupted by the adversary, it is correct, follows the
protocol, and takes infinitely many steps. In particular, it continues to invoke the object’s

39

Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

API infinitely often. Later in the paper, we show that the latter assumption is necessary.

We enrich the model with a public key infrastructure (PKI). That is, every process is
equipped with a public-private key pair used to sign data and verify signatures of other
processes. We denote a value v signed by process i as (v);.

Executions and Histories. We discuss algorithms emulating some object O from lower
level objects (e.g., registers). An algorithm is organized as methods of O. A method execution
is a sequence of steps, beginning with the method’s invocation (invoke step), proceeding
through steps that access lower level objects (e.g., register read/write), and ending with a
return step. The invocation and response delineate the method’s execution interval. In an
execution o of a Byzantine shared memory algorithm, each correct process invokes methods
sequentially, where steps of different processes are interleaved. Byzantine processes take
arbitrary steps regardless of the protocol. The history H of an execution o is the sequence
of high-level invocation and response events of the emulated object O in o.

A sub-history of a history H is a sub-sequence of the events of H. A history H is
sequential if it begins with an invocation and each invocation, except possibly the last, is
immediately followed by a matching response. Operation op is pending in a history H if op
is invoked in H but does not have a matching response event.

A history defines a partial order on operations: operation op; precedes ops in history H,
denoted op; <y ops, if the response event of op; precedes the invocation event of opy in H.
Two operations are concurrent if neither precedes the other.

Linearizability. A popular correctness condition for concurrent objects in the crash-
fault model is linearizability [18], which is defined with respect to an object’s sequential
specification. A linearization of a concurrent history H of object o is a sequential history
H' such that (1) after removing some pending operations from H and completing others by
adding matching responses, it contains the same invocations and responses as H', (2) H'
preserves the partial order <y, and (3) H' satisfies 0’s sequential specification.

f-resilient. An algorithm is f-resilient if as long as at most f processes fail, every correct
process eventually returns from each operation it invokes. A wait-free algorithm is a special
case where f =n — 1.

Single Writer Multiple Readers Register. The basic building block in shared
memory is a single writer multiple readers (SWMR) register that exposes read and write
operations. Such registers are used to construct more complicated objects. The sequential
specification of a SWMR register states that every read operation from register R returns
the value last written to R. Note that if the writer is Byzantine, it can cause a correct reader
to read arbitrary values.

Asset Transfer Object. In [17, 15], the asset transfer problem is formulated as a sequen-
tial object type, called Asset Transfer Object. The asset transfer object maintains a mapping
from processes in the system to their balances?. Initially, the mapping contains the initial
balances of all processes. The object exposes a transfer operation, transfer(src,dst,amount),
which can be invoked by process src (only). It withdraws amount from process src’s account
and deposits it at process dst’s account provided that src’s balance was at least amount. It
returns a boolean that states whether the transfer was successful (i.e., src had amount to
spend). In addition, the object exposes a read(i) operation that returns the current balance
of 1.

2 The definition in [17] allows processes to own multiple accounts. For simplicity, we assume a single
account per-process, as in [15].

40

S. Cohen and |. Keidar

4 Byzantine Linearizability

In this section we define Byzantine linearizability. Intuitively, we would like to tame the
Byzantine behavior in a way that provides consistency to correct processes. We linearize the
correct processes’ operations and offer a degree of freedom to embed additional operations
by Byzantine processes.

We denote by H|correct the projection of a history H to all correct processes. We say
that a history H is Byzantine linearizable if H|.orrect can be augmented with operations of
Byzantine processes such that the completed history is linearizable. That is, there is another
history, with the same operations by correct processes as in H, and additional operations by
another at most f processes. In particular, if there are no Byzantine failures then Byzantine
linearizability is simply linearizability. Formally:

» Definition 2. (Byzantine Linearizability) A history H is Byzantine linearizable if there
exists a history H' so that H'|correct = H|correet and H' is linearizable.

Similarly to linearizability, we say that an object is Byzantine linearizable if all of its
executions are Byzantine Linearizable.

Next, we characterize objects for which Byzantine linearizability is meaningful. The
most fundamental component in shared memory is read-write registers. Not surprisingly,
such registers, whether they are single-writer or multi-writers ones are de facto Byzantine
linearizable without any changes. This is because before every read from a Byzantine register,
invoked by a correct process, one can add a corresponding Byzantine write.

In practice, multiple writers multiple readers (MWMR) registers are useless in a Byzantine
environment as an adversary that controls the scheduler can prevent any communication
between correct processes. SWMR, registers, however, are still useful for constructing more
meaningful objects. Nevertheless, the constructions used in the crash-failure model for
linearizable objects do not preserve this property. For instance, if we allow Byzantine
processes to run a classic atomic snapshot algorithm [2] using Byzantine linearizable SWMR
registers, it will not result in a Byzantine linearizable snapshot object. The reason is that
the algorithm relies on correct processes being able to perform “double-collect” meaning that
at some point a correct process manages to read all registers twice without witnessing any
changes. While this is true in the crash-failure model, in the Byzantine model this is not the
case as the adversary can change some registers just before any correct read.

Relationship to Other Correctness Conditions

Byzantine linearizability provides a simple and intuitive way to capture Byzantine behavior
in the shared memory model. We now examine the relationship of Byzantine linearizability
with previously suggested correctness conditions involving Byzantine processes.

PBFT [12, 11] presented a formalization of linearizability in the presence of Byzantine-
faulty clients in message passing systems. Their notion of linearizability is formulated in the
form of I/O automata. Their specification is in the same spirit as ours, but our formulation
is closer to the original notion of linearizability in shared memory.

Some works have defined linearization conditions for specific objects. This includes
conditions for SWMR registers [22], a distributed ledger [13], and asset transfer [7]. Our
condition coincides with these definitions for the specific objects and thus generalizes all
of them. Liskov and Rodrigues [20] presented a correctness condition that has additional
restrictions. Their correctness notion relies on the idea that Byzantine processes are eventually
detected and removed from the system and focuses on converging to correct system behavior

41

Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

after their departure. While this model is a good fit when the threat model is software
bugs or malicious intrusions, it is less appropriate for settings like cryptocurrencies, where
Byzantine behavior cannot be expected to eventually stop.

5 Lower Bound on Resilience

In shared memory, one typically aims for wait-free objects, which tolerate any number of
process failures. Indeed, many useful objects have wait-free implementations from SWMR
registers in the non-Byzantine case. This includes reliable broadcast, snapshots, and as
recently shown, also asset transfer. We now show that in the Byzantine case, wait-free
implementations of these objects are impossible. Moreover, a majority of correct processes is
required.

» Theorem 3. In the Byzantine shared memory model, for any f > 2, there does not exist a
Byzantine linearizable implementation of asset transfer that supports only transfer operations
in a system with n < 2f processes, f of which can be Byzantine, using only SWMR registers.

Note that to prove this impossibility, it does not suffice to introduce bogus actions by
Byzantine processes, because the notion of Byzantine linearizability allows us to ignore these
actions. Rather, to derive the contradiction, we create runs where the bogus behavior of the
Byzantine processes leads to incorrect behavior of the correct processes.

Proof. Assume by contradiction that there is such an algorithm. Let us look at a system with
n = 2f correct processes. Partition IT as follows: II = AU B U {p1,p2}, where |A| = f — 1,
|Bl=f—-1, AnNB =0, and p1,ps ¢ AU B. By assumption, |A| > 1. Let z be a process
in A. Also, by assumption |B| > 2. Let g1, g2 be processes in B. The initial balance of all
processes but z is 0, and the initial balance of z is 1. We construct four executions as shown
in Figure 1.

Let 01 be an execution where, only processes in AU {p;} take steps. First, z performs
transfer(z,p1,1). Since up to f processes may be faulty, the operation completes, and
by the object’s sequential specification, it is successful (returns true). Then, p; performs
transfer(p1,q1,1). By f-resilience and linearizability, this operation also completes successfully.
Note that in o1 no process is actually faulty, but because of f-resilience, progress is achieved
when f processes are silent.

Similarly, let o3 be an execution where the processes in AU {p2} are correct, and z
performs transfer(z,ps,1), followed by po performing transfer(ps,qz,1).

We now construct o3, where all processes in AU {p;} are Byzantine. We first run o;. Call
the time when it ends ¢;. At this point, all processes in A U {p;} restore their registers to
their initial states. Note that no other processes took steps during o1, hence the entire shared
memory is now in its initial state. Then, we execute o. Because we have reset the memory
to its initial state, the operations execute the same way. When o2 completes, processes in
A\{z} U {p1} restore their registers to their state at time ¢;. At this point, the state of z
and po is the same as it was at the end of o9, the state of processes in A\ {z} U {p1} is the
same as it was at the end of o1, and processes in B are all in their initial states.

We construct o4 where all processes in AU {p2} are Byzantine by executing o2, having
all processes in A U {p2} reset their memory, executing o1, and then having z and py restore
their registers to their state at the end of 0. At this point, the state of z and ps is the same
as it was at the end of oy, the state of processes in A\ {z} U {p1} is the same as it was at
the end of o1, and processes in B are all in their initial states.

42

S. Cohen and |. Keidar

AU {p,} correct, BU {p } silent

o1 } transfer(z, p;, l)l }transfer(pl, q, 1}[

o transfer(z, ps, 1) jtransfer(ps, g2, 1) AU {p;} correct, BU {p, } silent

>
>

7 t t .
o3 |0 } transfer(z, p1, 1), transfer(pi, g, 1) |1 transfer(z, ps, 1), transfer(ps, gz, 1) ’ > AU {p,} Byzantine

P2 correct
AU {p, } reset to tg A\ {z} U {p1} reset to t;

2 t t
o4 |0_transfer(_z,p2,1)— transfer(ps, g2, 1) |1 transfer(z, p, 1) transfer(p,,ql,lhl |2‘

! } { AU {p,} Byzantine

T ” p1 correct

AU {p,} reset to ty z, po Teset to ty
Figure 1 An asset transfer object does not have an f-resilient implementation for n < 2f.

We observe that for processes in B, the configurations at the end of o3 and o4 are
indistinguishable as they did not take any steps and the global memory is the same. By
f-resilience, in both cases ¢1 and ¢a, together with processes in B and one of {p1,p2} should
be able to make progress at the end of each of these runs. We extend the runs by having ¢;
and ¢y invoke transfers of amount 1 to each other. In both runs processes in BU{p1, p2} help
them make progress. In o3, p1 behaves as if it is a correct process and its local state is the
same as it is at the end of o1, and in o4 p2 behaves as if it is a correct process and its local
state is the same as it is at the end of o5. Thus, o3 and o4 are indistinguishable to all correct
processes, and as a result ¢g; and ¢ act the same in both runs. However, from safety exactly
one of their transfers should succeed. In o3, ps is correct and transfer(psz,g2,1) succeeds,
allowing g2 to transfer 1 and disallowing the transfer from ¢;, whereas o4 the opposite is
true. This is a contradiction. <

Guerraoui et al. [17] use an atomic snapshot to implement an asset transfer object in
the crash-fault shared memory model. In addition, they handle Byzantine processes in the
message passing model by taking advantage of reliable broadcast. In Appendix A we show
that their atomic snapshot-based asset transfer can be easily adapted to the Byzantine
settings by using a Byzantine linearizable snapshot, resulting in a Byzantine linearizable asset
transfer. Their reliable broadcast-based algorithm, on the other hand, is not linearizable
and therefore not Byzantine linearizable even when using Byzantine linearizable reliable
broadcast. Nonetheless, Auvolat et al. [7] have used reliable broadcast to construct an asset
transfer object where transfer operations are linearizable (although reads are not).

We note that our lower bound holds for an asset transfer object without read operations.
This discussion and the construction in Appendix A lead us to the following corollary:

» Corollary 4. In the Byzantine shared memory model, for any f > 2, there does not exist an
f-resilient Byzantine linearizable implementation of an atomic snapshot or reliable broadcast
in a system with f > 5 Byzantine processes using only SWMR registers.

Furthermore, we prove in the following lemma that in order to provide f-resilience it is
required that at least a majority of correct processes take steps infinitely often, justifying
our model definition.

» Lemma 5. In the Byzantine shared memory model, for any f > 2, there does not exist an
f-resilient Byzantine linearizable implementation of asset transfer in a system withn > 2f+1

43

Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

processes, f of which can be Byzantine, using only SWMR registers if less than f + 1 correct
processes take steps infinitely often.

Proof. Assume by way of contradiction that there exists an f-resilient Byzantine linearizable
implementation of asset transfer in a system with n > 2f + 1 processes where there are at
most f correct processes that take steps infinitely often. Denote these f correct processes by
the set A. Thus, there is a point ¢ in any execution such that from time ¢, only processes
in A and Byzantine processes take any steps. Starting ¢, the implementation is equivalent
to one in a system with n = 2f, f of them may be Byzantine. This is a contradiction
to Theorem 3. <

6 Byzantine Linearizable Reliable Broadcast

With the acknowledgment that not all is possible, we seek to find Byzantine linearizable
objects that are useful even without a wait-free implementation. One of the practical objects
is a reliable broadcast object. We already proved in the previous section that it does not
have an f-resilient Byzantine linearizable implementation, for any f > maxz{3,5}. In this
section we provide an implementation that tolerates f < 7 faults.

6.1 Reliable Broadcast Object

The reliable broadcast primitive exposes two operations broadcast(ts,m) returning void and
deliver(j,ts) returning m. When deliver;(i,ts) returns m we say that process j delivers m
from process i in timestamp ts. The broadcast operation allows processes to spread a message
m in the system, along with some timestamp ts. The use of timestamps allows processes to
broadcast multiple messages.

Its classical definition, given for message passing systems [10], requires the following
properties:

Validity: If a correct process i broadcasts (ts,m) then all correct processes eventually
deliver m from process i in timestamp ts.

Agreement: If a correct process delivers m from process 4 in timestamp ts, then all correct
processes eventually deliver m from process ¢ in timestamp ts.

Integrity: No process delivers two different messages for the same (ts, j) and if j is correct
delivers only messages j previously broadcast.

In the shared memory model, the deliver operation for some process j and timestamp ts
returns the message with timestamp ts previously broadcast by j, if exists. We define the
sequential specification of reliable broadcast as follows:

» Definition 6. A reliable broadcast object exposes two operations broadcast(ts,m) returning
void and deliver(j,ts) returning m. A call to deliver(j,ts) returns the value m of the first
broadcast(ts,m) invoked by process j before the deliver operation. If j did not invoke broadcast
before the deliver, then it returns 1.

Note that as the definition above refers to sequential histories, the first broadcast operation
(if such exists) is well-defined. Further, whereas in message passing systems reliable broadcast
works in a push fashion, where the receipt of a message triggers action at its destination,
in the shared memory model processes need to actively pull information from the registers.
A process pulls from another process j using the deliver(j,ts) operation and returns with
a value m # L. If all messages are eventually pulled, the reliable broadcast properties are
achieved, as proven in the following lemma.

44

S. Cohen and |. Keidar

» Lemma 7. A Byzantine linearization of a reliable broadcast object satisfies the three
properties of reliable broadcast.

Proof. If a correct process broadcasts m, and all messages are subsequently pulled then
according to Definition 6 all correct processes deliver m, providing validity. For agreement, if
a correct process invokes deliver(j,ts) that returns m and all messages are later pulled by all
correct processes, it follows that all correct processes also invoke deliver(j,ts) and eventually
return m’ # L. Since deliver(j,ts) returns the value v of the first broadcast(ts,v) invoked by
process j before it is called, and there is only one first broadcast, and we get that m = m/.
Lastly, if deliver(j,ts) returns m, by the specification, j previously invoked broadcast(ts,m).

<

6.2 Reliable Broadcast Algorithm

In our implementation (given in Algorithm 1), each process has 4 SWMR registers: send,
echo, ready, and deliver, to which we refer as stages of the broadcast. We follow concepts
from Bracha’s implementation in the message passing model [9] but leverage the shared
memory to improve its resilience from 3f + 1 to 2f + 1. The basic idea is that a process
that wishes to broadcast value v writes it in its send register (line 4) and returns only when
it reaches the deliver stage. I.e., v appears in the deliver register of at least one correct
process. Throughout the run, processes infinitely often call a refresh function whose role is
to help the progress of the system. When refreshing, processes read all registers and help
promote broadcast values through the 4 stages. For a value to be delivered, it has to have
been read and signed by f + 1 processes at the ready stage. Because each broadcast message
is copied to 4 registers of each process, the space complexity is 4n per message. Whether
this complexity can be improved remains as an open question.

In the refresh function, executed for all processes, at first a process reads the last value
written to a send register (line 16). If the value is a signed pair of a message and a timestamp,
refresh then copies it to the process’s echo register in line 18. In the echo register, the value
remains as evidence, preventing conflicting values (sent by Byzantine processes) from being
delivered. That is, before promoting a value to the ready or deliver stage, a correct process ¢
performs a “double-collect” of the echo registers (in lines 19,21). Namely, after collecting
f + 1 signatures on a value in ready registers, meaning that it was previously written in the
echo of at least one correct process, i re-reads all echo registers to verify that there does
not exist a conflicting value (with the same timestamp and sender). Using this method,
concurrent deliver operations “see” each other, and delivery of conflicting values broadcast
by a Byzantine process is prevented. Before delivering a value, a process writes it to its
deliver register with f 4 1 signatures (line 22). Once one correct process delivers a value, the
following deliver calls can witness the f 4 1 signatures and copy this value directly from its
deliver register (line 11).

We make two assumptions on the correct usage of our algorithm. The first is inherently
required as shown in Lemma 5:

» Assumption 1. All correct processes infinitely often invoke methods of the reliable broadcast

API
The second is a straight forward validity assumption:
> Assumption 2. Correct processes do not invoke broadcast(ts,val) twice with the same ts.

We now prove our reliable broadcast algorithm’s correctness. We first notice:

45

10 Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

Algorithm 1 Shared Memory Bracha: code for process ¢

shared SWMR registers: send;, echo;, ready;, deliver;

1: procedure CONFLICTING-ECHO((ts, v);)
2: return Jw # v, k € II such that (ts,w); € echoy

3: procedure BROADCAST(ts,val)

4 send; < (ts,val);

5: repeat

6 m + deliver(i,ts)

7 until m # L > message is deliverable

8: procedure DELIVER(j,ts)

9: refresh()

10: if 3k € II and v s.t. ({ts,v);,0) € delivery where o is a set of f + 1 signatures on
(ready, (ts,v);) then

11: deliver; < deliver; U {((ts,v);,0)}

12: return v

13: return L

14: procedure REFRESH

15: for j € [n] do

16: m < send;

17: if Bts, val s.t. m = (ts,val); then continue > m is not a signed pair

18: echo; + echo; U {m}

19: if —conflicting-echo(m) then

20: ready; < ready; U {(ready, m);}

21: if 35 CIIs.t. |S| > f+1,Vj €S, (ready, m); € ready; and —conflicting-echo(m)
then

22: deliver; < deliver; U {(m,o = {(ready,m);|j € S})} > o is the set of f +1
signatures

» Observation 8. If process i is correct and v appears in echo; or ready; it is never deleted.

» Lemma 9. If process i is correct and ((ts,v);, o) appears in deliver; for any process j
then @ previously invoked broadcast(ts,v).

Proof. Since we assume unforgeable signatures, 7 has previously signed (ts,v). By the code,
this is only possible if ¢ invoked broadcast(ts, v). <

We next prove the following lemma, identifying invariants of Algorithm 1.

» Lemma 10. Algorithm 1 satisfies the following invariants:

I1: If ((ts,v)s, 0) (where o is a set of f+ 1 ready signatures) appears in deliver; for
any processes i, j, then (ready, (ts,v);)r € readyy for a correct process k.

I2: If (ready, (ts,v);); € ready; for a correct process j, then (ts,v); € echo;.

I3: If (ready, (ts,v);); appears in ready; and (ready, (ts,w);); appears in ready; for
any two correct processes 4,7’ then v = w.

46

S. Cohen and |. Keidar

write v to echo;

p1 l | |
| I ‘
t delivery (i, ts)
write w to echoy
P2 | | |
I I |
ts delivers (i, ts)
read echo, write v to ready;
p3 1 | | I
I I I 1
t delivers (i, ts) t3

\4

Figure 2 Concurrent deliver operations.

If: If ((ts,v);,0) appears in deliver; and ({ts,w);,o) appears in deliver; for any two
correct processes j,j’ then v = w.

Proof. I1: Since ((ts,v);, o) appears in deliver; and it contains a set of f+1 signatures
on (ready, (ts,v);), there is at least one correct process k that signed (ready, (ts,v);)
and added it to its ready register. By Observation 8, it is not deleted from the register.

12: Immediate from the code and Observation 8.

I3: Since (ready, (ts,v);0;) appears in ready; and j is correct, by 12 at least one correct
process signed (ts,v); and added it to its echo register. Let p; be the first correct
process to do so, and let ¢; be the moment of adding (ts, v); to echop,, (see Figure 2
for illustration). By Observation 8, it is not deleted from the register. Similarly, let
p2 be the first correct process to add (ts,w); to echop, at time to. WLOG, t1 > to.
In addition, let p3 be the first correct process to add (ready, (ts, v);) to readyy,, and
let t3 be the moment of the addition. By 12 it follows that t3 > ¢;. By Observation 8,
the content of echop, and readyp, is not deleted during the run. By the protocol, at
some point in time between ¢; and t3, p3 executes line 19 and reads all echo registers.
Let t; < t* < t3 be the time when ps reads echoy,. Since t; > to we conclude that
t* > ty. Since, ps does not see a conflicting value in echo,,, we get that v = w.

I4: By I1 at least one correct process j signed (ready, (ts,v);) and added it to ready;
and at least one correct process j’ signed (ready, (ts,w);) and added it to ready; .
Thus, by I3 v = w.

<

Let us examine an execution E of the algorithm. Let H be the history of E. First,
we define H¢ to be the history H after removing any pending deliver operations and any
pending broadcast operations that did not complete line 11 (which is called from line 6). We
define H' to be an augmentation of H¢|correct as follows. For every Byzantine process j
and a value v such that v is returned by deliver; (5,ts) for at least one correct process i, we
add to H' a broadcast; (ts,v) operation that begins and ends immediately before the first
correct process adds ((ts,v);,0) to its delivery register. Since at least one correct process
adds this value at line 11, this moment is well-defined. We construct a linearization E’ of H’
by defining the following linearization points:

Let o be a broadcast; (ts,v) operation by a correct process ¢ that completed line 11. Note
that by the code every completed broadcast operation completes line 11 exactly once, and
operations that do not complete this line are removed from H’. The operation linearizes

47

11

12 Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

when ((ts,v);, o) is added for the first time to delivery register of a correct process, which
occurs either when 7 executes line 11 or when another correct process executes line 22
beforehand. By the code, these lines are between the invocation and the return of the
broadcast procedure.

Let o be a deliver;(j,ts) operation by a correct process i that completes line 11 and
returns v # L (note that by the code every completed deliver operation that returns
v # L completes line 11 exactly once). If ¢ finds ((ts,v);, o) for some value v in some
correct process’ deliver register at line 10, then the operation linearizes when i first reads
({ts,v);,0) from a correct process. Otherwise, it linearizes at line 11 when ¢ copies the
data to deliver;.

If 0 is a completed deliver; (j,ts) operation by a correct process i that returns L it linearizes
at the moment of its invocation.

Every Byzantine broadcast; (ts,u) operation by process j linearizes at the moment we
added it.

In H’ there are no deliver operations by Byzantine processes. The following lemmas
prove that F’, the linearization of H', satisfies the sequential specification:

» Lemma 11. For a given deliver(j,ts) operation that returns v # L, there is at least one
preceding broadcast operation in E' of the form broadcast(ts,v) invoked by process j.

Proof. Let o be a deliver; (j,ts) operation invoked by a correct process 4 that returns v # L.
Let ¢ be the time when ((ts,v);,0) is added for the first time to a delivery register of a
correct process (where o contains f + 1 ready signatures). If j is correct then by Lemma 9 j
previously invoked broadcast(ts,u) and that broadcast linearizes at time ¢. If j is Byzantine
then broadcast(ts,v) by process j is added to H' immediately before t. There are two options
to the linearization point of o. If ¢ finds ((ts,v);, o) in some correct process’ deliver register
at line 10, then o linearizes when ¢ first reads ((ts,v);, o) from a correct process and thus it
is after time t. Otherwise, it linearizes at line 11 when ¢ copies the data to deliver;, which is
also no earlier than time t. <

» Lemma 12. For a broadcast;(ts,v) in E’, there does not exist any broadcast;(ts,w) in E’

for v # w.

Proof. If i is a correct process, the proof follows from Assumption 2. If i is Byzantine,
broadcast; (ts,v) is added immediately before the first correct process adds ((ts,v);, o) to its
delivery register. By I4, no correct processes add ({(ts,w);, o) to their delivery register for
v # w and broadcast; (ts,w) does not appear in F'. <

» Lemma 13. For a given deliver(j,ts) operation that returns L, there is no preceding
broadcast operation in H' of the form broadcast(ts,v) invoked by process j, for v # L.

Proof. Let o be a deliver(j,ts) operation invoked by a correct process i that returns L.
Assume by way of contradiction that there is a preceding broadcast(ts,v) operation in H'
invoked by process j, for v # 1. By definition, the broadcast linearizes no later than the
first adding of (({ts, v);, o) to a delivery register of a correct process. Thus, since o linearizes
at the moment of its invocation, it sees ((ts,v);, o) at some process’ delivery register and
returns v # L, in contradiction. <

Next, we prove f-resilience.

» Lemma 14. (Liveness) Every correct process that invokes some operation eventually
returns.

48

S. Cohen and |. Keidar

Proof. If a correct process i invokes a deliver operation then by the code it returns in a
constant time. If it invokes broadcast(ts,v), it copies (ts,v); to send;. By Assumption 1, all
correct processes infinitely often call the reliable broadcast API and specifically the refresh
procedure, see (ts,v); and copy it to their echo registers. As signatures are unforgable and i
is correct they do not find (ts, w); for any other w # v in any other echo registers and copy a
signed (ready, (ts,w);) to their ready registers. By I8, eventually they all see (ready, (ts,w);)
in f 4 1 ready registers and copy (ts,w); to their deliver registers. Eventually f + 1 correct
processes have (ts, w); in their deliver registers, and since the signatures are valid, the check
at line 10 evaluates to true, and ¢ returns v and finish the repeat loop. <

We conclude the following theorem:

» Theorem 15. Algorithm 1 implements an f-resilient Byzantine linearizable reliable broad-
cast object for any f < 5.

7 Byzantine Linearizable Snapshot

In this section, we utilize a reliable broadcast primitive to construct a Byzantine snapshot
object with resilience n > 2f.

7.1 Snapshot Object

A snapshot [2] is represented as an array of n shared single-writer variables that can be
accessed with two operations: update(v), called by process ¢, updates the it" entry in the
array and snapshot returns an array. The sequential specification of an atomic snapshot is as
follows: the " entry of the array returned by a snapshot invocation contains the value v
last updated by an update(v) invoked by process 4, or its variable’s initial value if no update
was invoked.

Following Lemma 5, we again must require that correct processes perform operations
infinitely often. For simplicity, we require that they invoke infinitely many snapshot operations;
if processes invoke either snapshots or updates, we can have each update perform a snapshot
and ignore its result.

» Assumption 3. All correct processes invoke snapshot operations infinitely often.

7.2 Snapshot Algorithm

Our pseudo-code is presented in Algorithms 2 and 3. During the algorithm, we compare
snapshots using the (partial) coordinate-wise order. That is, let s; and sy be two n-arrays.
We say that s > s1 if Vi € [n], sa[i].ts > s1][i].ts.

Recall that all processes invoke snapshot operations infinitely often. In each snapshot
instance, correct processes start by collecting values from all registers and broadcasting their
collected arrays in “start” messages (message with timestamp 0). Then, they repeatedly
send the identities of processes from which they delivered start messages until there exists

a round such that the same set of senders is received from f + 1 processes in that round.

Once this occurs, it means that the f 4+ 1 processes see the exact same start messages and
the snapshot is formed as the supremum of the collects in their start messages.

We achieve optimal resilience by waiting for only f + 1 processes to send the same set.

Although there is not necessarily a correct process in the intersection of two sets of size f +1,
we leverage the fact that reliable broadcast prevents equivocation to ensure that nevertheless,

49

13

14 Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

Algorithm 2 Byzantine Snapshot: code for process ¢

shared SWMR registers: Vj € [n] collected;[j] € {L} U{N x Vals} with selectors ts and
val, initially L

Vk € N, savesnap;[k] € {L} U {array of n Vals x set of messages} with selectors snap
and proof, initially L

local variables: ts; € N, initially 0

Vj € [n], rts;[j] € N, initially 0

r, auxnum € N, initially 0

p € [n], initially 1

Vi € [n],k € N, seen; [j][k],senders; € P(II), initially 0

o « () set of messages

1: procedure UPDATE(v)

2 for j € [n] do > collect current memory state
3: update-collect(collected;)

4 ts; < ts; +1

5 collected;[i] < (ts;,v); > update local component of collected

6: procedure SNAPSHOT

7: for j € [n] do > collect current memory state
8: update-collect(collected;)

9

] ¢ < collected;
10: repeat

11: aurnum < auzrnum + 1

12: snap snapshot-aux(auxnum)

13: until snap > ¢ > snapshot is newer than the collected state
14: return snap

15: procedure UPDATE-COLLECT(c)

16: for k € [n] do

17: if c[k].ts > collected;[k].ts and c[k] is signed by k then
18: collected;[k] < c[k]

there is a common message in the intersection, so two snapshots obtained in the same round
are necessarily identical. Moreover, once one process obtains a snapshot s, any snapshot seen
in a later round exceeds s.

Each process i collects values from all processes’ registers in a shared variable collect;.
When starting a snapshot operation, each process runs update-collect, where it updates its
collect array (line 8) and saves it in a local variable ¢ (line 9). When it does so, it updates the
it" entry to be the highest-timestamped value it observes in the i*® entries of all processes’
collect arrays (lines 16 — 18). Then, it initiates the snapshot-aux procedure with a new
auxnum tag. Snapshot-aux returns a snapshot, but not necessarily a “fresh” one that reflects
all updates that occurred before snapshot was invoked. Therefore, snapshot-aux is repeatedly
called until it collects a snapshot s such that s > ¢, according to the snapshots partial order
(lines 10 — 13).

By Assumption 3 and since the auznum variable at each correct process is increased
by 1 every time snapshot-aux is called, all correct processes participate in all instances

50

S. Cohen and |. Keidar

Algorithm 3 Byzantine Snapshot auxiliary procedures: code for process 4

19: procedure MINIMUM-SAVED(auxnum)

20: S« {s]3j € [n], s = savesnap;[auznum].snap and savesnap;lavznum].proof is a
valid proof of s}

21: if S =(then

22: return L

23: res < infimum(S) > returns the minimum value in each index
24: savesnap;lauznum] « (res, ¢, savesnap;lauznum].proof)

25: update-collect(res)

26: return res

27: procedure SNAPSHOT-AUX(auxnum)

28: initiate new reliable broadcast instance

20: o<« 0

30: for j € [n] do > collect current memory state
3L update-collect(collected;)

32: senders; < {i} > start message contains collect

33: broadcast(0,(collect;);)
34: while true do

35: cached < minimum-saved(auxnum) > check if there is a saved snapshot
36: if cached # L then return cached
37: p+ (p+1) modn+1 > deliver messages in round robin
38: m <+ deliver(p, rts;[p]) > deliver next message from p
39: if m = L then continue
40: if rts;[p]= 0 and m contains a signed collect array ¢ then
> start message (round 0)

41: o+ ouU{m}
42: update-collect(c)
43: senders; < senders; U {j}
44: else if m contains a signed set of processes, jsenders then

> round r message for r > 0
45: if jsenders ¢ senders; then
46: continue > cannot process message, its dependencies are missing
47: o+ ouU{m}
48: seen;[7][rtsi[p]] + jsenders U seen;[j][rts;[p] — 1]
49: rts;[p] < rts;[p] + 1
50: if received f + 1 round-r messages for the first time then
51: rr+1
52: broadcast(r, (senders;);)
53: if Js s.t. [{j] seen;[j][s] = senders;}| = f + 1 then > stability condition
54: r<0
55: senders;<—)
56: Vj € [n],k € N, seen; [j][k]+ 0
57: cached + minimum-saved (auxnum) > re-check for saved snapshot
58: if cached # 1 then return cached
59: savesnap;[auznum] < (collect;, o)

> o contains all received messages in this snapshot-aux instance
60: return collect;

ol

15

16

Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

of snapshot-aux. When a correct process invokes a snapshot-aux procedure with auxnum,
it first initiates a new reliable broadcast instance at line 28, dedicated to this instance
of snapshot-aux. Note that although processes invoke one snapshot-aux at a time, they
may engage in multiple reliable broadcast instances simultaneously. That is, they continue
to partake in previous reliable broadcast instances after starting a new one. As another
preliminary step of snapshot-aux, each correct process once again updates its collect array
using the update-collect procedure (lines 30— 31) and broadcasts it to all processes at line 33.
During the execution, a correct processes delivers messages from all other processes in a
round robin fashion. The local variable p represents the process from which it currently
delivers. In addition, rts[p] maintains the next timestamp to be delivered from p (lines 38,
49, 37). Note that if the delivered message at some point is L, rts[p] is not increased, so all
of p’s messages are delivered in order (line 39).

Snapshot-aux proceeds in rounds, which are reflected in the timestamps of the messages
broadcast during its execution. Each correct process starts snapshot-aux at round 0, where
it broadcasts its collected array; we refer to this as its start message. It then continues to
round r + 1 once it has delivered f + 1 round r messages (line 51). Each process maintains a
local set senders that contains the processes from which it received start messages (line 43).
In every round (from 1 onward) processes send the set of processes from which they received
start messages (line 52).

Process ¢ maintains a local map seen[j][r] that maps a process j and a round r to the set
of processes that j reported to have received start messages from in rounds 1-r (line 48), but
only if ¢ has received start messages from all the reported processes (line 45). By doing so,
we ensure that if for some correct process i and a round r seen;[j][r] contains a process [, |
is also in senders;. If this condition is not satisfied, the delivered counter for j (rts[j]) is not
increased and this message will be repeatedly delivered until the condition is satisfied.

Once there is a process i such that there exists a round s and there is a set S of f + 1
processes j for which seen;[j][s] is equal to senders;, we say that the stability condition
at line 53 is satisfied for S. At that time, ¢ and f more processes agree on the collected
arrays sent at round 0 by processes in senders;, and collect; holds the supremum of those
collected arrays. This is because whenever it received a start message, it updated its collect
so that currently collect; reflects all collects sent by processes in senders;. Thus, i can return
its current collect as the snapshot-aux result. Since reliable broadcast prevents Byzantine
processes from equivocating, there are f more processes that broadcast the same senders
set at that round, and any future round will “see” this set. As we later show, after at most
n + 1 rounds, the stability condition holds and hence the size of seen is O(n?®). Together
with the collected arrays, the total space complexity is cubic in n.

To ensure liveness in case some correct processes complete a snapshot-aux instance before
all do, we add a helping mechanism. Whenever a correct process successfully completes
snapshot-aux, it stores its result in a savesnap map, with the auxnum as the key (either at
line 24 or at line 59). This way, once one correct process returns from snapshot-aux, others
can read its result at line 35 and return as well. To prevent Byzantine processes from storing
invalid snapshots, each entry in the savesnap map is a tuple of the returned array and a proof
of the array’s validity. The proof is the set of messages received by the process that stores
its array in the current instance of snapshot-aux. Using these messages, correct processes
can verify the legitimacy of the stored array. If a correct process reads from savesnap a tuple
with an invalid proof, it simply ignores it.

52

S. Cohen and |. Keidar

7.3 Correctness

We outline the key correctness arguments highlighting the main lemmas. Formal proofs of
auxiliary lemmas appear in Appendix B. To prove our algorithm is Byzantine linearizable,
we first show that all returned snapshots are totally ordered (by coordinate-wise order):

» Lemma 16. If two snapshot operations invoked by correct processes return s; and s;, then
85 2> 8; or s < 8.

Based on this order, we define a linearization. Then, we show that our linearization
preserves real-time order, and it respects the sequential specification. We construct the
linearization E as follows: First, we linearize all snapshot operations of correct processes
in the order of their return values. Then, we linearize every update operation by a correct
process immediately before the first snapshot operation that “sees” it. We say that a snapshot
returning s sees an update by process j that has timestamp ts if s[j].ts > ts. If multiple
updates are linearized to the same point (before the same snapshot), we order them by their
start times. Finally, we add updates by Byzantine processes as follows: We add update(v) by
a Byzantine process j if there is a linearized snapshot that returns s and s[j].val = v. We
add the update immediately before any snapshot that sees it.

We next prove that the linearization respects the sequential specification.

» Lemma 17. The i*" entry of the array returned by a snapshot invocation contains the
value v last updated by an update(v) invoked by process i in E, or its variable’s initial value
if no update was invoked.

th entry of the array returned by a snapshot, with a

Proof. Let v be the value in the i
corresponding timestamp ts,. By the definition of E, update(v) by process i with timestamp
ts is linearized immediately before ts, > ts. If i is correct and multiple update operations by
1 are linearized at that point, then since ¢ invokes updates sequentially and by Lemmas 26
and 27 their start times are ordered according to the increasing timestamps. Thus, as updates
are linearized by their start times, v matches the value of the last update. If i is Byzantine,
since we add updates only for values at the moment they are seen, v must match the value of
the last update. Additionally, if v is an initial value, then no updates were linearized before

it in F. «

Because an update is linearized immediately before some snapshot sees it and snapshots
are monotonically increasing, all following snapshots see the update as well. Next, we prove
in the two following lemmas that E preserves the real-time order.

» Lemma 18. If a snapshot operation invoked by a correct process i with return value s;
precedes a snapshot operation invoked by a correct process j with return value sj, then s; < s;.

Proof. Assume i invokes snapshot operation snap;, which returns s; before j invokes snapshot
snap;, returning s;. Let c¢; be the value of collect; that j reads at line 8 of snap; and let
co be the value it writes in collect; at line 9. At the end of the last snapshot-aux in snap;,
collected; > s; either because the return value is collected; (if snapshot-aux returns at
line 60), or because s; is reflected in collect by the end of line 25 if it is a savesnap returned
at line 36 or at line 58. Due to the monotonicity of collects (Lemma 27), s; < ¢;. Because j
reads ¢; when calculating ca, ¢; < co. Finally, by Observation 28, ¢z < s; and by transitivity
we get that s; < s;. <

» Lemma 19. Let s be the return value of a snapshot operation snap; invoked by a correct
process i. Let update;(v) be an update operation invoked by a correct process j that writes
(ts,v) and completes before snap; starts. Then, s[j|.ts > ts.

93

17

18

Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

Proof. Let ¢; be the time when j completes line 5 in update;(v) and writes (ts,v). Let to be
the time when i reads collect;[i] at line 8 in snap,. By Lemmas 26 and 27, since j is correct,
it follows that collect;[j].ts > ts at time to > t;. Thus, after line 9 in snap; collect;[j).ts > ts
and by Observation 28, s[j].ts > ts.

<

It follows from Lemma 19 and the definition of F, that if an update precedes a snapshot
it is linearized before it, and from Lemma 18 that if a snapshot precedes a snapshot it is also
linearized before it. The following lemma ensures that if an update precedes another update
it is linearized before it. That is, if a snapshot operation sees the second update, it sees the
first one.

» Lemma 20. If updatel by process i precedes update2 by process j and a snapshot operation
snap by a correct process sees update?, then snap sees updatel as well.

Proof. Let s be the return value of a snapshot that sees update2. By Observation 30, s is
the supremum of collect arrays sent at line 33. If s sees update2, by Lemma 26, it means
that s reflects collect; after line 5 of update2. After, j performed line 3 and updatel was
reflected in collect;. Hence, s sees updatel as well. <

Finally, the next lemmas prove the liveness of our algorithm.
» Lemma 21. Every correct process that invokes snapshot-auz(auznum) eventually returns.

Proof. Assume by induction on auxnum that all snapshot-aux instances with &’ < k (if any)
have returned at all correct processes. Then, for auxnum=Fk, all correct processes initiate
reliable broadcast instances and broadcast (0, ¢). This is because all correct processes invoke
snapshot infinitely often. Since all messages by correct processes are eventually delivered,
they all eventually complete line 50 in each round. Because |senders| is bounded, eventually
the senders sets of all correct processes stabilize, and due to reliable broadcast, they contain
the same set of processes for all correct processes. Thus, there is a round r for which
the condition at line 53 is satisfied. Therefore, at least one correct process returns from
snapshot-aux at line 60 (if it did not return sooner). Before returning, it updates its savesnap
register at line 59. If it returns at line 36 or at line 58 it also updates its savesnap register at
line 24. Every other correct process that has not yet returned from snapshot-aux will read
the updated savesnap in the next while iteration and will return at line 36. |

» Lemma 22. (Liveness) FEuvery correct process that invokes some operation eventually
returns.

Proof. If a correct process ¢ invokes an update operation then by the code it returns in
constant time. If ¢ invokes a snapshot operation at time ¢, let ¢ be the collected array at
line 8. Additionally, let k& be the maximum auxnum of any snapshot-aux operation that
was initiated by some process before time t. By Lemma 21, all snapshot-aux invocations
eventually return. At snapshot-aux(k 4 1), all correct processes see ¢ at lines 30-31 when
they update their collect. Since the return value is the supremum of f + 1 collect arrays, it
is guaranteed that when i executes snapshot-aux(k + 1), the returned value res will satisfy
res > c. <

We conclude the following theorem:

» Theorem 23. Algorithm 2 implements an f-resilient Byzantine linearizable snapshot object
forany f < 3.

54

S. Cohen and |. Keidar

Proof. Lemma 16 shows that there is a total order on snapshot operations. Using this order,
we have defined a linearization E that satisfies the sequential specification (Lemma 17). We
then proved that F also preserves real-time order (Lemmas 18 — 20). Thus, Algorithm 2 is
Byzantine linearizable. In addition, Lemma 22 proves that Algorithm 2 is f-resilient. <

8 Conclusions

We have studied shared memory constructions in the presence of Byzantine processes. To
this end, we have defined Byzantine linearizability, a correctness condition suitable for shared
memory algorithms that can tolerate Byzantine behavior. We then used this notion to present
both upper and lower bounds on some of the most fundamental components in distributed
computing.

We proved that atomic snapshot, reliable broadcast, and asset transfer are all problems
that do not have f-resilient emulations from registers when n < 2f. On the other hand,
we have presented an algorithm for Byzantine linearizable reliable broadcast with resilience
n > 2f. We then used it to implement a Byzantine snapshot with the same resilience.
Among other applications, this Byzantine snapshot can be utilized to provide a Byzantine
linearizable asset transfer. Thus, we proved a tight bound on the resilience of emulations of
asset transfer, snapshot, and reliable broadcast.

Our paper deals with feasibility results and does not focus on complexity measures. In
particular, we assume unbounded storage in our constructions. We leave the subject of
efficiency as an open question for future work.

—— References

1 Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk paxos:
optimal resilience with byzantine shared memory. Distributed Computing, 18(5):387-408, 2006.

2 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic
snapshots of shared memory. Journal of the ACM (JACM), 40(4):873-890, 1993.

3 Yehuda Afek, David S Greenberg, Michael Merritt, and Gadi Taubenfeld. Computing with
faulty shared objects. Journal of the ACM (JACM), 42(6):1231-1274, 1995.

4 Marcos K Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra Marathe, and Igor
Zablotchi. The impact of rdma on agreement. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, pages 409-418, 2019.

5 Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra Marathe, and Igor
Zablotchi. The impact of rdma on agreement, 2021. arXiv:1905.12143.

6 Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Efficient atomic snapshots using lattice
agreement. In International Workshop on Distributed Algorithms, pages 35-53. Springer, 1992.

7 Alex Auvolat, Davide Frey, Michel Raynal, and Frangois Taiani. Money transfer made simple:
a specification, a generic algorithm, and its proof. Bulletin of EATCS, 3(132), 2020.

8 Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, Frangois Garillot, Zekun Li,
Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino. State machine replication
in the libra blockchain. The Libra Assn., Tech. Rep, 2019.

9 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130-143, 1987.

10 Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction to reliable and secure
distributed programming. Springer Science & Business Media, 2011.

11 Miguel Castro, Barbara Liskov, et al. A correctness proof for a practical byzantine-fault-
tolerant replication algorithm. Technical report, Technical Memo MIT/LCS/TM-590, MIT
Laboratory for Computer Science, 1999.

55

19

20

Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173-186, 1999.

Vicent Cholvi, Antonio Fernandez Anta, Chryssis Georgiou, Nicolas Nicolaou, and Michel
Raynal. Atomic appends in asynchronous byzantine distributed ledgers. In 2020 16th European
Dependable Computing Conference (EDCC), pages 77-84. IEEE, 2020.

Shir Cohen and Idit Keidar. Tame the wild with byzantine linearizability: Reliable broadcast,
snapshots, and asset transfer. In 35th International Symposium on Distributed Computing,
page 1, 2021.

Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti, Matej
Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, and Athanasios
Xygkis. Online payments by merely broadcasting messages. In 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 26-38. IEEE,
2020.

Giuseppe Antonio Di Luna, Emmanuelle Anceaume, and Leonardo Querzoni. Byzantine
generalized lattice agreement. In 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 674-683. IEEE, 2020.

Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovi¢, and Dragos-Adrian Seredin-
schi. The consensus number of a cryptocurrency. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 307-316, 2019.

Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463-492, 1990.

Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free shared
objects. Journal of the ACM (JACM), 45(3):451-500, 1998.

Barbara Liskov and Rodrigo Rodrigues. Byzantine clients rendered harmless. In International
Symposium on Distributed Computing, pages 487-489. Springer, 2005.

Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal byzantine storage. In
International Symposium on Distributed Computing, pages 311-325. Springer, 2002.

Achour Mostéfaoui, Matoula Petrolia, Michel Raynal, and Claude Jard. Atomic read/write
memory in signature-free byzantine asynchronous message-passing systems. Theory of Com-
puting Systems, 60(4):677-694, 2017.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report, Manubot,
2009.

Rodrigo Rodrigues and Barbara Liskov. Rosebud: A scalable byzantine-fault-tolerant storage
architecture. Technical report, 2003.

Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1-32, 2014.

Xiong Zheng and Vijay K. Garg. Byzantine lattice agreement in asynchronous systems. In
Quentin Bramas, Rotem Oshman, and Paolo Romano, editors, 24th International Conference
on Principles of Distributed Systems, OPODIS 2020, December 14-16, 2020, Strasbourg, France
(Virtual Conference), volume 184 of LIPIcs, pages 4:1-4:16. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2020. doi:10.4230/LIPIcs.0PODIS.2020.4.

56

S. Cohen and |. Keidar

Appendix A Byzantine Asset Transfer

In this section we adapt the asset transfer implementation from snapshots given in [17] to a
Byzantine asset transfer. The algorithm is very simple. It is based on a shared snapshot array
S, with a cell for each client process 4, representing i’s outgoing transactions. An additional
immutable array holds all processes’ initial balances. A process i’s balance is computed by
taking a snapshot of S and applying all of i’s valid incoming and outgoing transfers to i’s
initial balance. A transfer invoked by process i checks if i’s balance is sufficient, and if so,
appends the transfer details (source, destination, and amount) to ’s cell. Similarly to the
use of dependencies in the (message-passing broadcast-based) asset transfer algorithm of [17],
we also track the history of every transaction. To this end, we append to the process’s cell
also the snapshot taken to compute the balance for each transaction.

» Theorem 24. Algorithm / implements an f-resilient Byzantine linearizable asset transfer
object for any f < .

Proof. At any point during a sequential execution, we denote by B(p) the balance of
process p. Recall that the operation transfer(sre, dst,amount) causes the following changes:
B(sre) = B(src) — amount and B(dst) = B(dst) + amount.

In addition, at any point during a concurrent execution, we represent by balance(p) the
balance of process p derived from the state as follows:

If p is a correct process:

balance(p) = initial (p)

+ Z amount | tezn = (x, j, p,amount, *) € S[j] A valid(tzn)
j€correct(Il)

+ Z amount | tan = (x, j, p,amount, *) € S[j] A valid(tzn)
j€Byzantine(II)

A txn was read by some correct process

- Z amount | txn = (x,p, j,amount, *) € S[p] A valid(tzn)
JEN

If p is a Byzantine process:

balance(p) = initial (p)
+ Z amount | txn = (x, j, p,amount, *) € S[j] A valid(tzn)

jEcorrect(II)
+ Z amount | txn = (x, j, p,amount, *) € S[j] A valid(tzn)
jE€Byzantine(1l)
A txn was read by some correct process
— Z amount | txn = (x,p, j,amount, *) € S[p] A valid(tzn)
Jjel
A txn was read by some correct process
Let us examine an execution E of the algorithm. Let H be the history of E. First, we
define H¢ to be the history H after removing any pending read operations and any pending

transfer operations that did not complete line 18. We define H’' to be an augmentation of
He¢|correct as follows.

o7

21

22 Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

Algorithm 4 Byzantine Asset Transfer: code for process 4

shared Byzantine snapshot: S

initial- immutable array of initial balances

local variables: tzns; — sets of outgoing transaction, initially {}

ts; € N, initially 0

snap — array of sets of transactions, initially array of empty sets > the last snapshot
taken

struct txn contains:
timestamp ts,
source Src,
destination dst,
amount amount

1: procedure BALANCE(j,snap)
2 incoming < 0

3 outgoing < 0

4 for [€ [n] do

5: for k € snapll] do
6 if snap[l][k].dst = j and valid(snap[l][k]) then
7 incoming < incoming + snapll][k].amount
8 for k € snap[j] do

9 if valid(snap[j][k]) then

10: outgoing < outgoing + snap(j|[k].amount

11: return initial(j) + incoming — outgoing

12: procedure TRANSFER(src¢,dst,amount)
13: ts; < ts; +1
14: snap < S.snapshot()

15: if balance(sre, snap) < amount then

16: return false

17: txns; < trns;.append((ts;, sre, dst,amount, snap);)
18: S.update(tzns;)

19: return true

20: procedure READ(j)
21: snap + S.snapshot()
22: return balance(j, snap)

98

S. Cohen and |. Keidar

For every Byzantine process j and a transaction txn = (ts, §, dst, amount, deps) such that
tezn appears in the array returned by the snapshot procedure (either in line 21 or line 14) for
at least one correct process i, we add to H' a transfer; (j,dst,amount) operation that begins
and ends immediately before the first correct process performs that snapshot procedure.
Since at least one correct process reads this transaction, this moment is well-defined. We
construct a linearization E’ of H' by defining the following linearization points:

Let o be a read; (j) operation by a correct process ¢ that completes line 14. The operation
linearizes at that moment.

Let o be a transfer; (i,dst,amount) operation by a correct process i that completed line 18.
The operation linearizes at that moment. Note that operations that do not complete this
line are removed from H’. By the code, these lines are between the invocation and the
return of the broadcast procedure.

If o is a completed transfer; (i,dst,amount) operation by a correct process ¢ that returns
false it linearizes at line 21.

Every Byzantine transfer; (j,dst,amount) operation by process j linearizes at the moment
we added it.

In H' there are no read operations by Byzantine processes. It is clear from construction
that each operation invoked by a correct process is mapped to some point between its invoca-
tion event and its response event. We now prove that the concrete concurrent run simulates
the specification. That is, if we execute the sequential run defined by the linearization points
the changes in the balances (represented by B) reflects the actual changes on balance. Before
the execution begins, B(p) is the initial balance of process p. As the snapshot is empty
before the run begins, it holds by definition that B(p) = balance(p). We now show that at
any point B(p) = balance(p).

We prove the equivalence of B(p) and balance(p) by induction on the steps in the
executions. We assume that the claim holds before a particular step and show that it remains
the same after each step. For a correct process p, balances(p) changes at line 18 when some
transfer involving p is updated in the snapshot. As this is the linearization point of a transfer
operation, the same change in balance also applies to B(p) at that moment. For a Byzantine
process p, balances(p) changes at line 14 or line 14 when its transaction is being read by a
correct process. A transfer operation by Byzantine processes is added immediately before
the first correct process reads it, so this change also reflect B(p) at that moment.

Next, we prove f-resilience.

» Lemma 25. (Liveness) Every correct process that invokes some operation eventually
returns.

Proof. This is immediate from the snapshot f-resilient guarantees and the fact that all other
operations are local computations. <

<

Appendix B Byzantine Snapshot: Correctness

» Lemma 26. For a correct process i, at each point during an execution collect;|i] contains
the value signed by j with the highest timestamp until that point.

99

23

24

Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

Proof. By induction on the execution; collect;[i] can change either at line 5 or at line 18.
If it changes at line 5, ts; is increased and collect;[i] contains the value with the highest
timestamp. By induction, no signed value encountered at line 17 has s timestamp higher
than the one in collect;[i], so it is not updated at line 18. <

» Lemma 27. For a correct process i, collect; is monotonically increasing.

Proof. Let j € [n]. We prove that every time the value in collect;[j] is updated from m to
m’, it holds that m'.ts > m.ts. By the code collect;[j] changes either at line 5 or at line 18.
In both cases, the value in collect;[j] is signed by j. If collect;[j] changes at line 18, then
monotonicity is immediate from the condition at line 17. Otherwise, it changes at line 5,
indicating that ¢ = j and monotonicity follows from Lemma 26. <

» Observation 28. For a snapshot operation invoked by a correct process i, let c; be the
collected array at line 8 and let s be the return value. Then, s > ¢;.

Proof. Immediate from the condition at line 13. <

» Invariant 1. For any correct process i that invokes snapshot-auz(k), it holds that collect;
is the supremum of the arrays in start message sent by processes in senders; from line 33
and until the return value of snapshot-auz(k) is determined at line 23 or at line 60.

Proof. First, at line 33 senders; contains 7 itself, and i sends exactly its collect; array. The
argument continues by induction on steps of snapshot-aux(k). Other than line 25, collect;
and senders; change together: Whenever i receives a start message with an array ¢ from
process j, it updates collect; with the higher-timestamped values found in ¢ and adds j to
senders; (lines 42— 43).

<

» Definition 29. We say that the stability condition holds for a return value s1 of snapshot-
auz(k) with a round r and a set of processes S if (1) |S| > f+ 1, (2) there is a set S' 2 S
so that for each p € S the union of all jsenders sets sent in p’s messages in rounds 1 to r is
S’, and (3) s1 is the supremum of the collects sent in start messages of members of S’.

» Observation 30. If sy is returned from snapshot-aux(k) by a correct process i, then s;
satisfies the stability condition for some set S in some round r.

Proof. Consider two cases. First, if ¢ returns s; at line 60, then the condition is satisfied
for s; with the round s that satisfies the condition at line 53 and the set of f + 1 processes
for which the condition at line 53 holds. S’ is the set in senders; at the time the condition
is satisfied. Since messages are delivered in order, we get that S’ D S. Because the return
value is collect;, (3) follows from Invariant 1.

Second, if ¢ adopts a saved snapshot s; with a proof and returns at line 36 or at line 58,
then the proof contains f + 1 messages from some round r and corresponding start messages
satisfying the stability condition. <

» Lemma 31. For a given k, Let i, j be two correct processes that return s;, s; from snapshot-
auz(k). Then s; < s; or s; > s;.

Proof. By Observation 30, s; satisfies the stability condition for some set S7 in some round
r1. Let S| be the set guaranteed from the definition. Also by Observation 30, s; satisfies the
stability condition and some set S in some round ro. Let S be the set guaranteed from the
definition.

60

S. Cohen and |. Keidar

Since |S1| > f+ 1 and |S2| > f + 1, there is at least one process p € S1 N Se. Due to
reliable broadcast, p cannot equivocate with the set of processes jsenders sent in each round
of snapshot-aux(k).

If 1 = ro: By property (2) of Definition 29 S7 = S5, and by (3) s; = s;.

If r1 # ro: Assume WLOG r; < ry. Since the union of all jsenders sets sent in p’s
messages in rounds 1 to 79 is a superset of those sent in rounds 1 to r1, S5 2 S7 and then
by (3) s; > s;.

<«

» Lemma 32. Let i,j be two correct processes returning s;,s; resp. from snapshot-aux
with auznum = k, such that s; > s;. Then when i begins any snapshot-auz; (k') for k' > k,
collect; > s;.

Proof. Since j is correct, by Observation 30, s; satisfies the stability condition. Let ¢; be
a time when the condition is satisfied. At time ¢1, there is at least one correct process
I such that collect; > s;. We show that either (1) j does not return s; or (2) 4 begins
snapshot-aux; (k") with collect; > s;. If i begins snapshot-aux; (k) after ¢;, then when it
updates its collect at lines 30-31, it reads the values in collect;. By Lemma 27, collect; is
greater than or equal to its value at time ¢;. Thus, we get that collect; > collect; > s; and
(2) holds. Otherwise, i saves s; at line 59 before starting snapshot-aux(k'), which is before
time ¢;. Between time ¢; and the time it returns s;, j checks stored snapshots (at line 21).
When it does so, j reads s;, and since s; > s; and j returns the minimal array it sees, (1)
holds.

<

» Lemma 33. If snapshot-aux;(k) of a correct process i returns s;, there is a correct process
J s.t. j invoked snapshot-auz;(k) and s; > ¢;, where ¢; is the value of collected; after the
collection at line 81 in snapshot-auz(k) at j.

Proof. If snapshot-aux;(k) returns at line 60, then ¢ returns collect; and by Lemma 27,
s; = collect; is greater than or equal to its value after the collection at line 31 so the lemma
holds with ¢ = j. Otherwise, snapshot-aux;(k) returns s; at line 36 or at line 58 and s; is an
array saved in savesnap with a proof o signed by process p. Since i validates s;, there was a
round r such that |{j| seenp[j][s] = senders,}| > f + 1. Thus, there was at least one correct
process j in this set. Since j adds itself to senders; (Section 7.1), senders; is broadcast by
Jj at every round (Section 7.1), and it is the set added to seen, the array c; sent in j's start
message is reflected in s;. This set is exactly the value of collected; after the collection at
line 31 in snapshot-aux(k) at j, and hence s; > ¢;. <

Lemma 16. If two snapshot operations invoked by correct processes return s; and s;, then
85 2> 8; or s < 8.

Proof. By the code, s; is the return value of some snapshot-aux;(k;) and s; is the return
value of some snapshot-aux;(k;). WLOG, k; > k;.

If k; = k;, the proof follows from Lemma 31.

If k; > k;: By Lemma 33, there is a correct process ! that invoked snapshot-aux;(k;),
collected ¢; at line 31 of snapshot-aux;(k;) (where ¢; is the value of collected; at that
time), and s; > ¢;. Let s; be the return value of snapshot-aux;(k;) (note that ! invokes
snapshot-aux with increasing auxnums, so such a value exists). Consider two cases. First,

61

25

26 Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

if s; > s;, then by Lemma 32, s; < ¢;. Thus, s; < ¢ < s; and the lemma follows.
Otherwise, s; < s;. At the end of snapshot-aux;(k;) collected; > s; because either the
return value is collected;, or s; is reflected in collect by the end of line 25. Due to the

monotonicity of collects (Lemma 27), s; < ¢;. We conclude that s; < 53 < ¢ < s, as
required.

62

2.3 Be Aware of Your Leaders

Appears in the 26th International Conference of Financial Cryptography and Data
Security (FC 2022).

63

Be Aware of Your Leaders
Shir Cohen

Novi Research, Technion

Rati Gelashvili

Novi Research

Lefteris Kokoris Kogias
Novi Research, IST Austria

Zekun Li

Novi Research

Dahlia Malkhi

Novi Research

Alberto Sonnino
Novi Research

Alexander Spiegelman
Novi Research

—— Abstract

Advances in blockchains have influenced the State-Machine-Replication (SMR) world and many
state-of-the-art blockchain-SMR solutions are based on two pillars: Chaining and Leader-rotation.
A predetermined round-robin mechanism used for Leader-rotation, however, has an undesirable
behavior: crashed parties become designated leaders infinitely often, slowing down overall system
performance. In this paper, we provide a new Leader-Aware SMR framework that, among other
desirable properties, formalizes a Leader-utilization requirement that bounds the number of rounds
whose leaders are faulty in crash-only executions.

We introduce Carousel, a novel, reputation-based Leader-rotation solution to achieve Leader-
Aware SMR. The challenge in adaptive Leader-rotation is that it cannot rely on consensus to
determine a leader, since consensus itself needs a leader. Carousel uses the available on-chain
information to determine a leader locally and achieves Liveness despite this difficulty. A HotStuff
implementation fitted with Carousel demonstrates drastic performance improvements: it increases
throughput over 2x in faultless settings and provided a 20x throughput increase and 5x latency
reduction in the presence of faults.

2012 ACM Subject Classification Theory of computation — Distributed algorithms

Keywords and phrases SMR; Leader-election, Chain-quality

1 Introduction

Recently, Byzantine agreement protocols in the eventually synchronous model such as
Tendermint [5], Casper FFG [6], and HotStuff [22], brought two important concepts from
the world of blockchains to the traditional State Machine Replication (SMR) [12] settings,
Leader-rotation and Chaining. More specifically, these algorithms operate by designating
one party as leader of each round to propose the next block of transactions that extends
a chained sequence of blocks. Both properties depart from the approach used by classical
protocols such as PBFT [7], Multi-Paxos [13] and Raft [17] (the latter two in benign settings).
In those solutions, a stable leader operates until it fails and then it is replaced by a new
leader. Agreement is formed on an immutable sequence of indexed (rather than chained)
transactions, organized in slots.

64

Be Aware of Your Leaders

Leader-rotation is important in a Byzantine setting, since parties should not trust each
other for load sharing, reward management, resisting censoring of submitted transactions,
or ordering requests fairly [11]. The advantage of Chaining is that it simplifies the leader
handover since in the common case the chain eliminates the need for new leaders to catch up
with outcomes from previous slots.

In the permissioned SMR settings [1], most existing Leader-rotation mechanisms use a
round-robin approach to rotate leaders [8,21,22]. This guarantees that honest parties get a
chance to be leaders infinitely often, which is sufficient to drive progress and satisfy Chain-
quality [10]. Roughly speaking, the latter stipulates that the number of blocks committed to
the chain by honest parties is proportional to the honest nodes’ percentage. The drawback of
such a mechanism is that it does not bound the number of faulty parties which are designated
as leaders during an execution. This has a negative effect on latency even in crash-only
executions, as each crashed leader delays progress. Similarly to XFT [14], we seek to improve
the performance in such executions. Unlike XFT, we also maintain Chain-quality to thwart
Byzantine attacks.

In this paper, we propose a leader-rotation mechanism, Carousel, that enjoys both worlds.
Carousel satisfies non-zero Chain-quality, and at the same time, bounds the number of faulty
leaders in crash-only executions after the global stabilization time (GST), a property we
call Leader-utilization. The Carousel algorithm leverages Chaining to execute purely locally
using information available on the chain, avoiding any extra communication. To capture all
requirements, we formalize a Leader-Aware SMR problem model, which alongside Agreement,
Liveness and Chain-quality, also requires Leader-utilization. We prove that Carousel satisfies
the Leader-Aware SMR requirements.

The high-level idea to satisfy Leader-utilization is to track active parties via the records
of their participation (e.g. signatures) at the committed chain prefix and elect leaders among
them. However, if done naively, the adversary can exploit this mechanism to violate Liveness
or Chain-quality. The challenge is that there is no consensus on a committed prefix to
determine a leader, since consensus itself needs a leader. Diverging local views on committed
prefixes may be effectuated, for instance, by having a Byzantine leader reveal an updated
head of the chain to a subset of the honest parties. Hence, Carousel may not have agreement
on the leaders of some rounds, but nevertheless guarantees Liveness and Leader-utilization
after GST.

To focus on our leader-rotation mechanism, we abstract away all other SMR components
by defining an SMR, framework. Similarly to [20], we capture the logic and properties of
forming and certifying blocks of transactions in each round in a Leader-based round (LBR)
abstraction, and rely on a Pacemaker abstraction [4,15,16] for round synchronization. We
prove that when instantiated into this framework, Carousel yields a Leader-Aware SMR
protocol. Specifically, we show (1) for Leader-utilization: at most O(f2) faulty leaders may
be elected in crash-only executions (after GST); and (2) for Chain-quality: one out of O(f)
blocks is authored by an honest party in the worst-case. Note that in practice Chain-quality
guarantees are much better since the worst case scenario requires the adversary to posses an
unrealistic power.

We provide an implementation of Carousel in a HotStuff-based system and an evaluation
that demonstrates a significant performance improvement. Specifically, we get over 2x
throughput increase in faultless settings, and 20x throughput increase and 5x latency
reduction in the presence of faults. Our mechanism is adopted in the most recent version of
DiemBFT [21], a deployed HotStuff-based system.

65

S. Cohen et al.

2 Model and Problem Definition

We consider a message-passing model with a set of n parties Il = {p1,...,pn}, out of which
f < 3 are subject to failures. A party is crashed if it halts prematurely at some point during
an execution. If it deviates from the protocol it is Byzantine. An honest party never crashes
or becomes Byzantine. We say that an execution is crash-only if there are no Byzantine
failures therein.

For the theoretical analysis we assume an eventually synchronous communication model [9]
in which there is a global stabilization time (GST) after which the network becomes syn-
chronous. That is, before GST the network is completely asynchronous, while after GST
messages arrive within a known bounded time, denoted as §.

As we later describe, we abstract away much of the SMR implementation details by
defining and using primitives. Therefore, our Leader-rotation solution is model agnostic and
the adversarial model depends on the implementation choices for those primitives.

Leader-Aware SMR

In this section we introduce some notation and then define the Leader-Aware SMR, problem.
Roughly speaking, Leader-Aware SMR, captures the desired properties of the Leader-rotation
mechanism in SMR protocols that are leader-based.

An SMR protocol consists of a set of parties aiming to maintain a growing chain of
blocks. Parties participate in a sequence of rounds, attempting to form a block per round.
In Leader-Aware SMR, each round is driven by a leader. We capture these rounds via the
Leader-based round (LBR) abstraction defined later.

A block consists of transactions and the following meta-data:

A (cryptographic) link to a parent block. Thus, each block implicitly defines a chain to

the genesis block.

A round number in which the block was formed.

The author id of the party that created the block.

A certificate that (cryptographically) proves that 2f 4+ 1 parties endorsed the block in

the given round and with the given author. We assume that it is possible to obtain the

set of 2f 4+ 1 endorsing parties'.
Note that having a round number and the author id as a part of the block is not strictly
necessary, but they facilitate formalization of properties and analysis. For example, an honest
block is defined as a block authored by an honest party and a Byzantine block is a block
authored by a Byzantine party.

We assume a predicate certified(B,r) € {true, false} that locally checks whether the
block has a valid certificate, i.e. it has 2f +1 endorsements for round r. If certified(B,r) =
true we say that B is a certified block of round r. When clear from context, we say that B
is certified without explicitly mentioning the round number.

An SMR protocol does not terminate, but rather continues to form blocks. Each block B
determines its implied chain starting from B to the genesis block via the parent links. We
use notation B — B’, saying B’ extends B, if block B is on B’’s implied chain. Honest
parties can commit blocks in some rounds (but usually not all). A committed block indirectly
commits its implied chain. An SMR protocol must satisfy the following:

L This can be achieved by multi-signature schemes which are practically as efficient as threshold signa-
tures [3].

66

Be Aware of Your Leaders

» Definition 1 (Leader-Aware SMR). Liveness: An unbounded number of blocks are

committed by honest parties.

Agreement: If an honest party p; has committed a block B, then for any block B’

committed by any honest party p; either B — B’ or B — B.

Chain-quality: For any block B committed by an honest party p;, the proportion of

Byzantine blocks on B’s implied chain is bounded.

Leader-Utilization: In crash-only executions, after GST, the number of rounds r for

which no honest party commits a block formed in r is bounded.
The first two properties are common to SMR protocols. While most SMR, algorithms
satisfy the above mentioned Liveness condition, a stronger Liveness property can be defined,
requiring that each honest party commits an unbounded number of blocks. This property
can be easily be achieved by an orthogonal forwarding mechanism, where each honest leader
that creates a block explicitly sends it to all other parties. A notion of Chain-quality that
bounds the adversarial control over chain contents was first suggested by Garay et al. [10].
We introduce the Leader-utilization property to capture the quality of the Leader-rotation
mechanism in crash-only executions. Note that although it is tempting to define leader
utilization for Byzantine executions as well, it seems impossible to do so without failure
detectors. Byzantine parties can decide not to form a block whenever they become leaders.
This reduces to the question — can we bound the number of adversarial leaders? the answer
is, unfortunately, no.

3 Leader-Aware SMR: The Framework

In order to isolate the Leader-rotation problem in Leader-Aware SMR protocols, we abstract
away the remaining logic into two components. First, similar to [19,20] we capture the logic
to form and commit blocks by the Leader-based round (LBR) abstraction (Section 3.1). We
follow [4,16] and capture round synchronization by the Pacemaker abstraction (Section 3.2).
These two abstractions can be instantiated with known implementations from existing SMR
protocols.

In Section 3.3 we define the core API for Leader-rotation and combine it with the above
components to construct an SMR protocol. In Section 4 we present a Leader-rotation
algorithm that can be easily computed based on locally available information and makes the
construction a Leader-Aware SMR.

3.1 Leader-based round (LBR)

The LBR abstraction exposes to each party p; an API to invoke LBR(r,{), where r € N is a
round number and ¢ is the leader of round r according to party p;. Intuitively, a leader-based
round captures an attempt by parties to certify and commit a block formed by the leader? —
which naturally requires sufficiently many parties to agree on the identity of the leader. We
assume that non-Byzantine parties can only endorse a block B with round number r and
author ¢ by calling LBR(r, {).

Every LBR invocation returns within A; > ¢d time, where ¢ depends on the specific LBR
implementation (i.e., each round requires a causal chain of ¢ messages to complete). That is,
A; captures the inherent timeouts required for eventually synchronous protocols. We say

2 Existing SMR protocols may have separate rounds (and even leaders) for forming and committing
blocks, but this distinction is not relevant for the purposes of the paper and LBR abstraction is defined
accordingly.

67

S. Cohen et al.

that round r has k < n LBR-synchronized(¢) invocations if k honest parties invoke LBR(r, {)
after GST and within A; — ¢ time of each other with the same party ¢3.

The return value of an LBR invocation in round r is always a block with a round number
r’ < r. The intention is for LBR invocations to return gradually growing committed chains.
Occasionally, there is no progress, in which case the invocations are allowed to return a
committed block whose round 7’ is smaller than r. Formally, the output from LBR satisfies
the following properties:

» Definition 2 (LBR). Endorsement: For any block B and roundr, if certified(B,r) =

true, then the set of endorsing parties of B contains 2f + 1 parties. *

Agreement: If B and B’ are certified blocks that are each returned to an honest party
from an LBR invocation, then either B — B’ or B’ — B.

Progress: If there are k > 2f + 1 LBR-synchronized({) invocations at round r and £ is
honest, then they all return a certified B with round number r authored by €.

Blocking: If a non-Byzantine party { never invokes LBR(r,f), then no LBR(r,{)
invocation may return a certified block formed in round r.

Reputation: If a non-Byzantine party p never invokes LBR for round r, then any
certified block B with round number r does not contain p among its endorsers.

The LBR definition intends to capture just the key properties required for round abstrac-
tion in SMR protocols but leaves room for various interesting behavior. For example, if the
progress preconditions are not met at round 7, then some honest parties may return a block
B for round r while others do not. Moreover, in this case the adversary can hide certified
blocks from honest parties and reveal them at any point via the LBR return values.

3.2 The Pacemaker

The Pacemaker [4,15,16] component is a commonly used abstraction, which ensures that,
after GST, parties are synchronized and participate in the same round long enough to satisfy
the LBR progress. We assume the following:

» Definition 3 (Pacemaker). The Pacemaker eventually produces new_round(r) notifications
at honest parties for each round r. Suppose for some round r all new_round(r) notifications
at non-Byzantine parties occur after GST, the first of which occurs at time Ty, and the
last of which occurs at time T;. Then no non-Byzantine party receives a new_round(r + 1)
notification before Ty + Ay, and Ty — Ty < §. The Pacemaker can be instantiated with any
parameter Ay, > 0.

To combine the LBR and Pacemaker components into an SMR protocol in Section 3.3 we
fix A, = A;. Note that by using the above definition, the resulting protocol is not responsive
since parties wait A, before advancing rounds. This can easily be fixed by using a more
general Pacemaker definitions from [4,15,16]. However, we chose the simplified version above
for readability purposes since the Pacemaker is orthogonal to the thesis of our paper.

3 LBR-synchronized requires that the corresponding execution intervals have a shared intersection lasting
> ¢d time.

4 Note that Endorsement implies that although LBR can be invoked for round r with more than one
leader [, there is at most one author for a block in r.

68

Be Aware of Your Leaders

3.3 Leader-rotation - the missing component

In Algorithm 1 we show how to combine the LBR and Pacemaker abstractions into a leader-
based SMR protocol. The missing component is the Leader-rotation mechanism, which
exposes a choose_leader(r, B) API. It takes a round number r € N and a block B and
returns a party p € II. The choose_ leader procedure is locally computed by each honest
party at the beginning of every round.

The Agreement property of Algorithm 1 follows immediately from the Agreement property
of LBR, regardless of choose leader implementation. In Appendix A we prove that Al-
gorithm 1 satisfies liveness as long as all honest parties follow the same choose_leader
procedure and that this procedure returns the same honest party at all of them infinitely often.
In the next section we instantiate Algorithm 1 with Carousel: a specific choose_leader
implementation to obtain a Leader-Aware SMR protocol. That is, we prove that Algorithm 1
with Carousel satisfies liveness, Chain-quality, and Leader-utilization.

Algorithm 1 Constructing SMR: code for party p;

1: commit__head < genesis

2: upon new_round (r) do

3: leader < choose_leader (r, commit_head)

B < LBR(r,leader)

if commit _head — B then
commit B > all blocks in B’s implied chain that were not yet committed.
commit__head <+ B

4 Carousel: A Novel Leader-Rotation Algorithm

In this section, we present Carousel- our Leader-rotation mechanism. The pseudo-code is
given in Algorithm 2, which combined with Algorithm 1 allows to obtain the first Leader-
Aware SMR protocol.

We use reputation to avoid crashed leaders in crash-only executions. Specifically, at the
beginning of round r, an honest party checks if it has committed a block B with round
number r — 1. In this case, the endorsers of B are guaranteed to not have crashed by round
r — 1. For Chain-quality purposes, the f latest authors of committed blocks are excluded
from the set of endorsers, and a leader is chosen deterministically from the remaining set.

If an honest party has not committed a block with round number r — 1, it uses a round-
robin fallback scheme to elect the round r leader. Notice that different parties may or may
not have committed a block with round number r — 1 before round r. In fact, the adversary
has multiple ways to cause such divergence, e.g. Byzantine behavior, crashes, or message
delays. As a result, parties can disagree on the leader’s identity, and potentially compromise
liveness. We prove, however, that Carousel satisfies liveness, as well as leader utilization and
Chain-quality. Specifically, we show that (1) the number of rounds r for which no honest
party commits a block formed in r is bounded by O(f?); and (2) at least one honest block is
committed every 5f + 2 rounds. The argument is non-trivial since, for example, we need to
show that the adversary cannot selectively alternate the fallback and reputation schemes to
control the Chain-quality.

69

S. Cohen et al.

Algorithm 2 Leader-rotation: code for party p;

8: procedure choose_ leader(r, commit__head)

9: last_authors < ()
10: if commit__head.round_number #r — 1 then
11: return (r mod n) > round-robin fallback
12: active <+ commit__head.endorsers
13: block < commit__head
14: while |last__authors| < f Ablock # genesis do
15: last__authors «+ last__authors U {block.author}
16: block + block.parent
17: leader__candidates < active \ last__authors
18: return leader__candidates.pick__one() > deterministically pick from the set

4.1 Correctness

Leader-Utilization.

In this section, we are concerned with the protocol efficiency against crash failures. We
consider time after GST, and at most f parties that may crash during the execution but
follow the protocol until they crash (i.e., non-Byzantine). We say that a party p crashes in
round 7 if 41 is the minimal number for which p does not invoke LBR in line 4. Accordingly,
we say that a party is alive at all rounds before it crashes. In addition, we say that a round
r occurs after GST if all new_round (r) notifications at honest parties occur after GST.

We start by introducing an auxiliary lemma which extends the LBR Progress property for
crash-only executions. Since in a crash-only case faulty parties follow the protocol before they
crash, honest parties cannot distinguish between an honest leader and an alive leader that
has not crashed yet. Hence, the LBR Progress property hold even if the leader crashes later
in the execution. Formal proof of the following technical lemma, using indistinguishability
arguments, appears in Appendix A.

» Lemma 4. In a crash-only execution, let r be a round with k > 2f+1 LBR-synchronized(()
invocations, such that £ is alive at round r, then these k invocations return a certified B with
round number r authored by £.

Furthermore, if no party crashes in a given round and the preconditions of the adapted
LBR Progress conditions are met a block is committed in that round and another alive leader
is chosen.

» Lemma 5. If the preconditions of Lemma 4 hold and no party crashes in round r, then
k> 2f + 1 honest parties commit a block for round r and return the same leader ¢’ at line 3
of round r + 1 and ' is alive at round 7.

Proof. By Lemma 4, k honest parties return from LBR(r,¢) with a certified block B with
round number 7 authored by ¢. Then, since commit__head — B, they all commit B at line 6
of round r + 1. By the LBR Reputation property, the set of B’s endorsers does not include
parties that crashed in rounds < r. Since no party crashes in round r, B’s endorsers are all
alive in round r. Since these 2f + 1 parties each committed block B with round number r,
in choose_ leader in Algorithm 1, they all use the reputation scheme (line 18) to choose
the leader of round r + 1, that we showed is alive at round r. <

70

Be Aware of Your Leaders

Next, we utilize the latter to prove that in a round with no crashes, it is impossible for a
minority of honest parties to return with a certified block from an LBR instance. Namely,
either no honest party returns a block, or at least 2f + 1 of them do.

» Lemma 6. In a crash-only execution, let r be a round after GST in which no party crashes.
If one honest party returns from LBR with a certified block B with round number r, then
2f + 1 honest parties return with B.

Proof. Assume an honest party returns a certified block B with round number r after
invoking LBR(r,¢). By the LBR Blocking property, ¢ itself must have invoked LBR(r,{)
and by assumption it was alive at round r. By the LBR Endorsement property, the set of
endorsing parties of B contains 2f + 1 parties. Since we consider a crash-only execution, it
follows by assumption that 2f + 1 party called LBR(r,£). Due to the use of Pacemaker,
these calls are LBR~synchronized(£) invocations. Finally, by Lemma 4 all these calls return a
certified B with round number r authored by #.

<«

We prove that in a window of f + 2 rounds without crashes, there must be a round with
the sufficient conditions for a block to be committed for that round.

» Lemma 7. In a crash-only execution, let R be a round after GST such that no party
crashes between rounds R and R+ f 42 (including). There exists a round R <r < R+ f+2
for which there are 2f + 1 LBR-synchronized(?) invocations with a leader ¢ that is alive at
round r.

Proof. First, let us consider the LBR invocations for round R. By Lemma 6, if one honest
party returns with a block B with round number R, then 2f + 1 honest parties return with
B, commit it and update commit__head accordingly (line 7). In this case, there are 2f + 1
choose_leader(R+1, B) invocations, which all return at line 18. Otherwise, no party return
a block with round number R, and thus they all return at line 11. By the code and since
a block implies a unique chain, in both cases 2f + 1 honest parties return the same leader
¢ in choose_leader(R + 1, B) (either by reputation or round-robin). By the Pacemaker
guarantees and since R + 1 occurs after GST, there are at least 2f + 1 LBR-synchronized ()
invocations. If ¢ is alive at round R + 1, we are done. Otherwise, £ must have been crashed
before round R by the alive definition and lemma assumptions. Thus, by the LBR Blocking
property no honest party commits a block for round R and they all choose the same leader
for the following round at line 11. The lemma follows by applying the above argument for
R+f+2—-—R+1=f+1 rounds.

<

Finally, we bound by O(f?) the total number of rounds in a crash-only execution for
which no honest party commits a block:

» Lemma 8. Consider a crash-only execution. After GST, the number of rounds r for which
no honest party commits a block formed in r is bounded by O(f?).

Proof. Consider a crash-only execution and let Ry, Rs, ... Ry the rounds after GST in which
parties crash (k < f). For ease of presentation we call a round for which no honest party
commits a block formed in r a skipped round. We prove that the number of skipped rounds
between R; and R; 41 for 1 < i < k is bounded. If R;11 — R; < f +4, then there are at most
f -+ 4 rounds and hence at most f + 4 skipped rounds. Otherwise, we show that at most
f + 2 rounds are skipped between rounds R; and R;y1.

71

S. Cohen et al.

First, by Lemma 7, there exists a round R; < R; + 1 <r < R, + 1+ f+2 < R;4; for
which there are 2f + 1 LBR-synchronized(¢) invocations with a leader £ that is alive at round
r. By Lemma 5, since no party crashes in round r, 2f + 1 honest parties return the same
leader ¢ at line 3 of round r + 1 and ¢ is alive at round r. Since no party crashes at round
r 4+ 1 as well (because R;y1 — R; > f +4), ¢' is alive at round r + 1. By the Pacemaker
guarantees and since we consider rounds after GST, we conclude that there are at least 2f + 1
LBR-synchronized(¢') invocations for round r + 1. By Lemma 5 applied again for round
r 41, 2f 4+ 1 honest parties commit a block for round r 4+ 1. Thus, round r 4 1 is not skipped.
We repeat the same arguments until round R;1, and conclude that in each of these rounds
a block is committed. Hence, the rounds that can possibly be skipped between R; and R;11
are R; <1’ < r. Thus there are O(f) skipped round between R; and R;.1. For Ry we use
similar arguments but since no party crashes after Ry, we apply Lemma 5 indefinitely. We
similarly conclude that there are O(f) skipped rounds after Ry. All in all, since k < f, we
get O(f?) skipped rounds.

<

We immediately conclude the following:

» Corollary 9. Algorithm 1 with Algorithm 2 satisfies Leader-utilization.

4.1.1 Chain-Quality.

For the purposes of the Chain-quality proof, we say that a block is committed when some
honest party commits it. We say that a block B with round number r is immediately
committed if an honest party commits B in round r. When we refer to a leader elected in
of Algorithm 2 from the round-robin mechanism we mean line 11, and when we refer to a
leader elected from the reputation mechanism, we mean line 18.

We begin by showing that each round assigned with an honest round-robin leader implies
a committed block in that round or the one that precedes it (not necessarily an honest block).

» Lemma 10. Let r be a round after GST such that p; = (r mod n) is honest. Then, either
a Byzantine block with round number r — 1 or an honest block with round number r — 1 or r
is immediately committed.

Proof. If a block is immediately committed with round number r — 1 then we are done.
Otherwise, no honest party commits a block with round number » — 1 in round r — 1, and
they all elect the round r leader ¢ using the round-robin mechanism. By the assumption, ¢ is
honest.

By the Pacemaker, all honest invocations of LBR(r, £) in line 4 are LBR-synchronized(?).
Since there are at least 2f + 1 honest parties, by the LBR Progress property, all honest
invocations return the same certified block B with round number r authored by ¢. Then,
the honest parties commit B at line 6. <

If there are two consecutive rounds assigned with honest round-robin leaders and in
addition the last f committed blocks are Byzantine, then an honest block follows, as proven
in the following lemma.

> Lemma 11. Let v’ be a round after GST such that p; = (r' mod n) and p; = (' +1
mod n) are honest. Suppose f blocks with round numbers in [r,r") with different Byzantine
authors are committed. For a block B with round number ' or v’ + 1 that is immediately
committed, there is an honest block with round number [r,r’ 4+ 1] on B’s implied chain.

72

10

Be Aware of Your Leaders

Proof. By the LBR endorsement assumption and property, the author of block B should be
either a reputation-based, or a round-robin leader of round v’ or r’ + 1. If it is a round-robin
leader, then by the lemma assumption, the leader is honest and since B is the head of its
implied chain, the proof is complete. Thus, in the following we assume that B’s author is
a reputation-based leader. By the SMR Agreement property and the lemma assumption,
B’s implied chain contains f blocks with different Byzantine authors and rounds numbers in
[r,7"). By the code of the reputation-based mechanism, either all f Byzantine authors are
excluded from the leader candidates which implies that B has an honest author, or that
there is an honest block with round number in [r,7') on B’s implied chain.

<

Lastly, the following lemma proves that in any window of 5f + 2 rounds an honest block
is committed.

» Lemma 12. Let r be a round after GST. At least one honest block is committed with a
round number in [r,r +5f + 2].

Proof. Suppose for contradiction that no honest block with round number in [r,7 + 5f + 2]
is committed. There are at least f rounds ' in [r,7 + 3f + 1), such that rounds v’ — 1
and r’ are allocated an honest leader by the round-robin mechanism. By Lemma 10, a
block with round number ' — 1 or 7/ is immediately committed. Due to Lemma 10 and the
contradiction assumption, for any such round 7/, a Byzantine block with round number r’ — 1
is immediately committed. Since ' — 1 has an honest round-robin leader, the block must be
committed from the reputation mechanism.

It follows that f Byzantine blocks with round numbers in [r,r + 3f + 1) are immediately
committed from the reputation mechanism, and consequently, they all must have different
authors. Note that there exists v € [r+3f + 1,7 + 5f + 2) (in a window of 2f + 1
rounds), such that the round-robin mechanism allocates honest leaders to rounds 7’ and 7'+ 1.
By Lemma 10, a block B with round number r’ or 7' +1 is immediately committed. Lemma 11
concludes the proof. <

We conclude the following:
» Corollary 13. Algorithm 1 with Algorithm 2 satisfies Chain-quality and Liveness.

Taken jointly, Theorem 9, Theorem 13, and the Agreement property proved in Section 3.3
yield the following theorem:

» Theorem 14. Algorithm 1 with Algorithm 2 implements Leader-Aware SMR.

5 Implementation

We implement Carousel on top of a high-performance open-source implementation of Hot-
Stuff> [22]. We selected this implementation because it implements a Pacemaker [22],
contrarily to the implementation used in the original HotStuff paper®. Additionally, it
provides well-documented benchmarking scripts to measure performance in various condi-
tions, and it is close to a production system (it provides real networking, cryptography, and

5 https://github.com/asonnino/hotstuff
6 https://github.com/hot-stuff/libhotstuff

73

S. Cohen et al.

persistent storage). It is implemented in Rust, uses Tokio” for asynchronous networking,
ed25519-dalek® for elliptic curve based signatures, and data-structures are persisted using
RocksDB?. It uses TCP to achieve reliable point-to-point channels, necessary to correctly
implement the distributed system abstractions. By default, this HotStuff implementation
uses traditional round-robin to elect leaders; we modify its LeaderElector module to use
Carousel instead. Implementing our mechanism requires adding less than 200 LOC, and
does not require any extra protocol message or cryptographic tool. We are open-sourcing
Carousel'® along with any measurements data to enable reproducible results'!.

6 Evaluation

We evaluate the throughput and latency of HotStuff equipped Carousel through experiments
on Amazon Web Services (AWS). We then show how it improves over the baseline round-robin
leader-rotation mechanism. We particularly aim to demonstrate that Carousel (i) introduces
no noticeable performance overhead when the protocol runs in ideal conditions (that is, all
parties are honest) and with a small number of parties, and (ii) drastically improves both
latency and throughput in the presence of crash-faults. Note that evaluating BFT protocols
in the presence of Byzantine faults is still an open research question [2].

We deploy a testbed on AWS, using m5.8xlarge instances across 5 different AWS regions:
N. Virginia (us-east-1), N. California (us-west-1), Sydney (ap-southeast-2), Stockholm (eu-
north-1), and Tokyo (ap-northeast-1). Parties are distributed across those regions as equally
as possible. Each machine provides 10Gbps of bandwidth, 32 virtual CPUs (16 physical
core) on a 2.5GHz, Intel Xeon Platinum 8175, 128GB memory, and run Linux Ubuntu server
20.04.

In the following sections, each measurement in the graphs is the average of 5 independent
runs, and the error bars represent one standard deviation. Our baseline experiment parameters
are 10 honest parties, a block size of 500KB, a transaction size of 512B, and one benchmark
client per party submitting transactions at a fixed rate for a duration of 5 minutes. We then
crash and vary the number of parties through our experiments to illustrate their impact on
performance. The leader timeout value is set to 5 seconds for runs with 10 and 20 parties
and increased to 10 seconds for runs with 50 parties. When referring to latency, we mean
the time elapsed from when the client submits the transaction to when the transaction is
committed by one party. We measure it by tracking sample transactions throughout the
system.

6.1 Benchmark in Ideal Conditions

Figure 1 depicts the performance of HotStuff with both Carousel and the baseline round-robin
running with 10, 20, and 50 honest parties. For runs with a small number of parties (e.g.,
10), the performance of the baseline round-robin HotStuff is similar to HotStuff equipped
with Carousel. We observe a peak throughput around 70,000 tx/s with a latency of around 2
seconds. This illustrates that the extra code required to implement Carousel has negligible
overhead and does not degrade performance when the total number of parties is small. When

" https://tokio.rs

8 https://github.com/dalek-cryptography/ed25519-dalek
9 https://rocksdb.org

10 ink omitted for blind review.

1 Link omitted for blind review.

74

11

12

Be Aware of Your Leaders

8.0
Round-Robin, 10 nodes
7.01 Round-Robin, 20 nodes
Round-Robin, 50 nodes
—§— Carousel, 10 nodes
6.0

T =¥ cCarousel, 20 nodes
- ¥ Carousel, 50 nodes

o
°

Latency (s)
»
°

N w
o =]
—_—

Iy
°
1
]

1

1] 10k 20k 30k 40k 50k 60k 70k 80k
Throughput (tx/s)

Figure 1 Comparative throughput-latency performance of HotStuff equipped with Carousel and

with the baseline round-robin. WAN measurements with 10, 20, 50 parties. No party faults, 500KB
maximum block size and 512B transaction size.

increasing the system’s size (to 20 and 50 parties), HotStuff with Carousel greatly outperforms
the baseline: the bigger the system’s size, the bigger the performance improvement. With 50
nodes, the throughput of our mechanism-based HotStuff increases by over 2x with respect to
the baseline, and remains comparable to the 10-parties testbed. After a few initial timeouts,
Carousel has the benefit to focus on electing performant leaders. Leaders on more remote
geo-locations that are typically slower are elected less often, the protocol is thus driven by the
most performant parties. Similar ideas were presented in [18] in the context of distributed
data storage, where a leader placement was optimized based on replicas’ locations. In our
experiments, latency is similar for both implementations and around 2-3 seconds.

6.2 Performance under Faults

Figure 2 depicts the performance of HotStuff with both Carousel and the baseline round-robin
when a set of 10 parties suffers 1 or 3 crash-faults (the maximum that can be tolerated).
The baseline round-robin HotStuff suffers a massive degradation in throughput as well as
a dramatic increase in latency. For three faults, the throughput of the baseline HotStuff
drops over 30x and its latency increases 5x compared to no faults. In contrast, HotStuff
equipped with Carousel maintains a good level of throughput: our mechanism does not
elect crashed leaders, the protocol continues to operate electing leaders from the remaining
active parties, and is not overly affected by the faulty ones. The reduction in throughput
is in great part due to losing the capacity of faulty parties. When operating with 3 faults,
Carousel provides a 20x throughput increase and about 5x latency reduction with respect to
the baseline round-robin.

Figure 3 depicts the evolution of the performance of HotStuff with both Carousel and
the baseline round-robin when gradually crashing nodes through time. For roughly the first
minute, all parties are honest; we then crash 1 party (roughly) every minute until a maximum
of 3 parties are crashed. The input transaction rate is fixed to 10,000 tx/s throughout the
experiment. FEach data point is the average over intervals of 10 seconds. For roughly the
first minute (when all parties are honest), both systems perform ideally, timely committing
all input transactions. Then, as expected, the baseline round-robin HotStuff suffers from
temporary throughput losses when a crashed leader is elected. Similarly, its latency increases
with the number of faulty parties and presents periods where no transactions are committed
at all. In contrast, HotStuff equipped with Carousel delivers a stable throughput by quickly

75

S. Cohen et al.

30.0

| ~$~ Round-Robin, 10 nodes —§— Carousel, 10 nodes

’!‘ ~&- Round-Robin, 10 nodes (1 faulty) =¥~ Carousel, 10 nodes (1 faulty)
25.0 r -4+ Round-Robin, 10 nodes (3 faulty) -+ Carousel, 10 nodes (3 faulty)

Latency (s)
- N
o 4
=))

-
e
)

I —

0.0 T T
o 10k 20k 30k 40k
Throughput (tx/s)

Figure 2 Comparative throughput-latency performance of HotStuff equipped with Carousel and
with the baseline round-robin. WAN measurements with 10 parties. Zero, one and three party faults,
500KB maximum block size and 512B transaction size.

detecting and eliminating crashed leaders. Its latency is barely affected by the faulty parties.
This graph clearly illustrates how Carousel allows HotStuff to deliver a seamless client
experience even in the presence of faults.

7 Conclusions

Leader-rotations mechanisms in chaining-based SMR protocols were previously overlooked.
Existing approaches degraded performance by keep electing faulty leaders in crash-only
executions. We captured the practical requirement of leader-rotation mechanism via a
Leader-utilization property, use it define the Leader-Aware SMR, problem, and described an
algorithm that implements it. That is, we presented a locally executed algorithm to rotate
leaders that achieves both: Leader-utilization in crash-only executions and Chain-quality in
Byzantine ones. We evaluated our mechanism in a Hotstuff-based open source system and
demonstrated drastic performance improvements in both throughput and latency compared
to the round-robin baseline.

—— References

1 Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
et al. Hyperledger fabric: a distributed operating system for permissioned blockchains. In
Proceedings of the thirteenth EuroSys conference, pages 1-15, 2018.

2 Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun Li, Avery Ching,
and Dahlia Malkhi. Twins: Bft systems made robust. In 25th International Conference on
Principles of Distributed Systems (OPODIS 2021). Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, 2022.

3 Dan Boneh, Manu Drijvers, and Gregory Neven. The modified BLS multi-signature construc-
tion. https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html, 2018.

4 Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Making byzantine consensus live.
In 34th International Symposium on Distributed Computing (DISC 2020). Schloss Dagstuhl-
Leibniz-Zentrum fiur Informatik, 2020.

5 Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis,
2016.

6 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget.

76

13

14

Be Aware of Your Leaders

Throughput (cmd/s)

Latency (s)

10

11

12

13

14

15

e) ~®- Round-Robin, 10 nodes (3 faulty)
10k N R 2
‘{" ¥ ‘Xf"* v ‘ " -¥- Carousel, 10 nodes (3 faulty)
; 1 RS 3 v,
/ | V~-.y‘//\ ‘v ‘.&\ M
¥ 1 \ re.. | ¥ ?
8k 1 /,{ \ I e =
\ o \ I H } LY ;. v
| 1 \ 1 \ ' \ ¥y oy v Yo L%
! b] [h X v/ Y
6k 1 ! 1 I 1 1 \ * it 1
1 \] Iy L
W \ v 1 Iy H Iy
' \ [] Iy
1 \ [1y) Iy
L 1 l []) H | ! \ 1 \ e I i
4k 1 \ ¥ 1 1 7 | I Y I\\ 1
! 1 1 [| ! \ ™ 1
\ \] (. | ¥ \ e] \
$ \I 1 [1N 1 [
2K - il 1\ ['y [N 1 1
I] T 1 | A | 1
1] ‘\,’ 1y | ,’ \\ I’ “
\
‘ u “l’ v/ \¥} 1
F | A | i
[v] T T T
] 40 80 120 160 200 240 280
Time (s)
T
~®- Round-Robin, 10 nodes (3 faulty) ?
14 4
-¥- Carousel, 10 nodes (3 faulty) 1
1
1
12 A R t
[N H
;N / !
\ \
10 1 o1 T
-7 N \ e \
R et——-0 \ v, ¢
8 /\ 1 Ny 4
/1] AV \y,
e /I \ 1 » »
A \ 1
6 e+ O~ \ S T
! \ / [}
! \ (]
4 ! \ +—+
/ \,' v
* !] Vi
24 \\ I’ u
L O S WAv...y...'...y..-v-...v...y...&__.‘...y.__’...v...y...;...y...v...;...y...v...a'..-v...';..;y
(1] T r r r r r
o 40 80 120 160 200 240 280
Time (s)

Figure 3 Comparative performance of HotStuff equipped with Carousel and with the baseline
round-robin when gradually crashing nodes through time. The input transactions rate is fixed to
10,000 tx/s; 1 party (up to a maximum of 3) crashes roughly every minute. WAN measurements
with 10 parties, 500KB maximum block size and 512B transaction size.

Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173-186, 1999.

Benjamin Y Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains. In Proceedings
of the 2nd ACM Conference on Advances in Financial Technologies, pages 1-11, 2020.
Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288-323, 1988.

Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Annual international conference on the theory and applications of
cryptographic techniques, pages 281-310. Springer, 2015.

Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine
consensus. In Annual International Cryptology Conference, pages 451-480. Springer, 2020.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. In
Communications of the ACM, volume 21, page 558-565. 1978.

Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18-25, 2001.

Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukoli¢. {XFT}:
Practical fault tolerance beyond crashes. In 12th { USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pages 485-500, 2016.

Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. Cogsworth: Byzantine
View Synchronization. Cryptoeconomic Systems, 1(2), oct 22 2021.

7

S. Cohen et al.

16

17

18

19

20

21

22

Oded Naor and Idit Keidar. Expected linear round synchronization: The missing link for
linear byzantine smr. In 34th International Symposium on Distributed Computing (DISC
2020). Schloss Dagstuhl-Leibniz-Zentrum fiur Informatik, 2020.

Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In
2014 USENIX Annual Technical Conference (USENIX ATC 1), pages 305-319, 2014.
Artyom Sharov and Alexander Shraer Arif Merchant Murray Stokely. Take me to your leader!
online optimization of distributed storage configurations. Proceedings of the VLDB Endowment,
8(12), 2015.

Alexander Spiegelman. In search for an optimal authenticated byzantine agreement. In 35th
International Symposium on Distributed Computing, 2021.

Alexander Spiegelman, Arik Rinberg, and Dahlia Malkhi. Ace: Abstract consensus encapsu-
lation for liveness boosting of state machine replication. In 24th International Conference
on Principles of Distributed Systems (OPODIS 2020). Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik.

The Diem Team. Diembft v4: State machine replication in the diem blockchain. https://
developers.diem.com/docs/technical-papers/state-machine-replication-paper.html.
Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
Bft consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 347-356, 2019.

78

16

Be Aware of Your Leaders

Appendix A Correctness

» Lemma 15. If choose_leader returns the same honest party at all honest parties for
infinitely many rounds, then each honest party commits an unbounded number of blocks.

Proof. If choose leader returns the same honest party at all honest parties for infinitely
many rounds, then there are infinitely many rounds after GST for which it does so. Let r be
such a round. By the Pacemaker guarantees, all honest parties make LBR-synchronized(¢)
invocations with the same honest leader £ returned from the choose_leader procedure. By
the LBR Progress property, they all return a certified block B and commit it at line 6. <«

» Lemma 16. In a crash-only execution, let r be a round with k > 2f+1 LBR-synchronized(?)
invocations, such that £ is alive at round r, then these k invocations return a certified B with
round number r authored by £.

Proof. Let m be a crash-only execution, such that round r has k > 2f+1 LBR-synchronized(?)
invocations with a leader ¢ that is alive at round 7. If £ is honest, then the LBR Progress
property concludes the proof.

Otherwise, ¢ is faulty and by definition it crashes in round > r. Let w2 be a crash-only
execution that is identical to 71 until ¢ crashes, and the rest of 7y is an arbitrary execution
where the honest parties in 7y remain honest but ¢ never crashes and is also honest. Thus,
in 72 the preconditions of the LBR Progress property hold and all ¥ LBR-synchronized({)
invocations return a certified B with round number r authored by /.

An LBR(r,{) invocation by any party p completes within A; time, and starts immediately
after Pacemaker’s new_round(r) notification at p (because choose_leader is computed
locally and takes 0 time). By Pacemaker’s guarantees, no party receives new_ round(r + 1)
notification until A, = A; time after the last new_round(r + 1) notification at some party,
hence all LBR(r, ¢) invocations must complete before any party receives a new_round(r + 1)
notification.

71 and 7y are identical until £ crashes, which must happen after £ receives its new_round(r+
1) notification from the Pacemaker. This is because ¢ is alive in round r and follows the
protocol, invoking LBR in round r + 1 after receiving the new round(r + 1) notification.
As a result, m; and 7o are indistinguishable to all LBR(r,¢) invocations, and the k LBR-
synchronized () invocations in m; return certified block B with round number r authored by
{ as in 79, as desired. <

79

2.4 Make Every Word Count: Adaptive Byzantine Agree-

ment with Fewer Words

Appears in the 26th International Conference on Principles of Distributed Systems
(OPODIS 2022).

80

Make Every Word Count: Adaptive Byzantine
Agreement with Fewer Words
Shir Cohen &

Technion, Israel

Idit Keidar =

Technion, Israel

Alexander Spiegelman &
Aptos, USA

—— Abstract

Byzantine Agreement (BA) is a key component in many distributed systems. While Dolev and
Reischuk have proven a long time ago that quadratic communication complexity is necessary for
worst-case runs, the question of what can be done in practically common runs with fewer failures
remained open. In this paper we present the first Byzantine Broadcast algorithm with O(n(f + 1))
communication complexity in a model with resilience of n = 2t 4+ 1, where 0 < f <t is the actual
number of process failures in a run. And for BA with strong unanimity, we present the first
optimal-resilience algorithm that has linear communication complexity in the failure-free case and a
quadratic cost otherwise.

2012 ACM Subject Classification Theory of computation — Distributed algorithms
Keywords and phrases Byzantine Agreement, Byzantine Broadcast, Adaptive communication

Funding Shir Cohen: Supported by the Adams Fellowship Program of the Israel Academy of Sciences
and Humanities.

1 Introduction

Byzantine Agreement (BA) is a key component in many distributed systems. As these
systems are being used at larger scales, there is an increased need to find efficient solutions
for BA. Arguably, the most important aspect of an efficient BA solution is its communication
costs. That is, how much information needs to be transferred in the network to solve the
BA problem. Indeed, improving the communication complexity, often measured as word
complexity, was the focus of many recent works and deployed systems [1, 11, 16, 2, 13, 7].

In the BA problem, a set of n processes attempt to agree on a decision value despite the
presence of Byzantine processes. One of the properties of a BA algorithm is a threshold ¢ on
how many Byzantine processes it can withstand. Namely, the algorithm is correct as long as
up to t processes are corrupted in the course of a run. In this paper we focus on n =2t + 1
and we assume a trusted setup of a public-key infrastructure (PKI) that enables us to use a
threshold signature scheme [15, 4, 6].

A large and growing body of literature has investigated how to reduce the word com-
plexity of BA algorithms. Recently, Momose and Ren [13] have presented a synchronous
protocol with O(n?) words, which meets Dolev and Reischuk’s long-standing lower bound [9].
Spiegelman [16] considered the more common case, where the number of actual failures,
denoted by f, is smaller than ¢ with resilience of n = 3t 4+ 1. In this paper we consider better
resilience and ask:

Can we design a BA protocol with O(n(f + 1)) communication complexity in runs with
f <t failures, where n =2t + 17

81

Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

Adaptive Byzantine Broadcast
Section 5

Adaptive weak BA
Section 6

Quadratic strong BA [13]

Figure 1 Relation between various Byzantine Agreement solutions. Each box uses the primitives
within it.

Whereas Dolev and Reischuk’s better-known lower bound applies to worst-case runs, they
further proved a lower bound of Q(nt) signatures in failure-free runs (f = 0) in a model with
a PKI. At the time, one could have thought that this bound extends to the communication
complexity, rendering it Q(nt) even with small f values. However, the introduction of
threshold signature schemes [8, 15, 4, 6] exposed the possibility to compact many signatures
into one word, potentially saving many words.

In this paper, we first revisit the original problem as stated in Dolev and Reischuk’s work.
In this problem there is a single sender who proposes a value and we refer to this problem as
Byzantine Broadcast (BB). We prove that although O(nt) signatures are inevitable, O(nt)
messages are not necessary with f € o(t) failures by presenting an adaptive BB solution with

O(n(f + 1)) words.

The idea behind our algorithm is to reduce this problem to another BA variant. There
is a simple reduction from BB to BA with the strong unanimity validity property (from
hereon: strong BA), which states that if all correct processes propose the same value, this is
the only allowed decision. In this reduction, the sender initially sends its value to all other
processes who then run a BA solution. Unfortunately, no adaptive strong BA is known to
date. ILe., a strong BA solution where communication complexity depends on f, rather than
on t. Instead, in Section 5 we reduce the problem to a new weak BA problem with a weaker
validity property, unique validity, which we define in this paper.

Intuitively, the validity condition of weak BA is somewhere between weak unanimity,
where if all processes are correct and propose the same value this is the only allowed decision,
and external validity [5], where a decision value must satisfy some external predicate. In weak
BA, one can define its desired predicate and the requirement is that if all correct processes
propose the same value and Byzantine processes cannot devise a value that satisfies the
chosen predicate, then the decision must be valid. Otherwise, L is allowed.

While the unique validity condition seems to be weak, it is surprisingly powerful when
provided the “right” external predicate. For example, we can determine that a value is valid
if it has at least ¢t + 1 unique signatures, assuring that some correct process in the system
knows this value. Unique validity may be of independent interest as a tool for designing
algorithms. We present our adaptive weak BA in Section 6. The weak BA, in turn, exploits
the quadratic solution by Momose and Ren [13]. Figure 1 describes the relation between the
various solutions.

Finally, we consider strong BA. In Section 7, we present the first optimally resilient
strong binary BA protocol with O(n) communication complexity in the failure-free case.
This leaves open the question whether a fully adaptive (to any f) strong BA protocol exists.
We summarize the results in Table 1.

82

S. Cohen, I. Keidar, and A. Spiegelman

Table 1 Bounds on communication complexity of deterministic synchronous Byzantine Agreement
algorithms with resilience n = 2t 4 1.

Upper Bound Lower Bound
Byzantine Broadcast | O(n(f + 1)) Section 5 + Section 6 | Q(nf) (2(n?) signatures) [9]
Strong BA O(n?) multi-valued Momose-Ren [13] Q(nf) binary
O(n) with f =0, binary Section 7 (22(n?) signatures) [9]
Weak BA O(n(f + 1)) multi-valued Section 6 Q(n)

2 Model and Preliminaries

We consider a distributed system consisting of a well-known static set II of n processes and an
adaptive adversary. The adversary may adaptively corrupt up to t < n,n = 2t + 1 processes
in the course of a run. A corrupted process is Byzantine; it may deviate arbitrarily from the
protocol. In particular, it may crash, fail to send or receive messages, and send arbitrary
messages. As long as a process is not corrupted by the adversary, it is correct and follows
the protocol. We denote by 0 < f <t the actual number of corrupted processes in a run.

Cryptographic tools. We assume a trusted public-key infrastructure (PKI) and a
computationally bounded adversary. Hence, we can construct and use a threshold signature
scheme [15, 4, 6]. We denote by (m), the message m signed by process p. Using a (k,n)-
threshold signature scheme, k& unique signatures on the same message m can be batched into
a threshold signature for m with the same length as an individual signature. For simplicity
we abstract away the details of cryptography and assume the threshold signature schemes
are ideal. In practice, our results hold except with arbitrarily small probability, depending
on the security parameters.

Communication. Every pair of processes is connected via a reliable link. If a correct
process p; receives a message m indicating that m was sent by a correct process p;, then m
was indeed generated by p; and sent to p;. The network is synchronous. Namely, there is a
known bound ¢ on message delays, allowing us to design protocols that proceed in rounds.
Specifically, if a correct process sends a message to any other correct process at the beginning
of some round, it is received by the end of the same round.

Complexity. We use the following standard complexity notions [2, 16, 13]. While
measuring complexity, we say that a word contains a constant number of signatures and
values from a finite domain, and each message contains at least 1 word. The communication
complexity of a protocol is the maximum number of words sent by all correct processes,
across all runs. The adaptive complexity is a complexity that depends on f.

3 Problem Definitions

We consider a family of agreement problems all satisfy agreement and termination defined as
follows:

Agreement No two correct processes decide differently.
Termination Every correct process eventually decides.

In addition, each variant of the problem satisfies some validity property. In the Byzantine
Broadcast (BB) problem, a designated sender has an input to broadcast to all n processes.
The goal is that all correct processes decide upon the sender’s value. If the sender is Byzantine,
however, it is enough that all correct processes decide upon some common value. Formally,

83

Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

» Definition 1 (Byzantine Broadcast). In Byzantine Broadcast, a designated sender sender
has an input value Vgenger to broadcast to all processes, and each correct process decides on an
output value decision;. BB solution must satisfy agreement, termination and the following
validity property:

Validity If sender is correct, then all correct processes decide Vsender-

Byzantine Agreement (BA) is a closely related problem to BB. In this problem, a set II of
n processes each propose an initial value and they all attempt to reach a common decision. In
addition, the decided value must be “valid” in some sense that makes the problem non-trivial.
The classic notion of validity states that if all correct processes in II share the same initial
value, then the decision must be on this value. This property is known as strong unanimity,
and it entails a limitation on the resilience of a protocol, requiring that n > 2t + 1. For
hereon we refer to BA with strong unanimity validity condition as strong BA. Formally,

» Definition 2 (Strong Byzantine Agreement). In Byzantine Agreement, each correct process
pi € II proposes an input value v; and decides on an output value decision;. Any strong BA
solution must satisfy agreement, termination and the following validity property:

Strong unanimity If all correct processes propose the same value v, then the output is v.

A different validity property requires that a decision satisfies some external boolean
predicate (we call such value a valid value). It is used under the assumption that all correct
processes propose valid values. This is known as external validity [5] and only requires
n > t. External validity by itself is trivial in case there is a well-known predefined value
that satisfies the predicate. However, it is commonly used in settings with signatures, where
valid values can be verified by all but generated only by specific users or sets thereof. For
instance, consider a predicate that verifies that v is signed by n — ¢ processes — no process
can unilaterally generate a default valid value.

Our notion of unique validity adopts external validity to allow default values to be decided
in cases when there is no unanimous valid value. We say that a value v exists in a run of
a BA protocol if v is either the input value of a correct process or can be generated by a
Byzantine process. E.g., any value signed by a non-Byzantine process cannot be generated
locally by a Byzantine process. Unique validity stipulates that there is a default value if and
only if there exists more than one valid value in a BA run. Formally,

» Definition 3 (Weak Byzantine Agreement). In weak Byzantine Agreement, each correct
process p; € I1 proposes an input value v; and decides on an output value decision;. Any
weak BA solution must satisfy agreement, termination and the following validity property:

Unique Validity Assume an arbitrary predicate validate(v) € {true, false} that can be com-
puted locally. If a correct process decides v then either v = L or validate(v) = true, and
if v= L then more than one valid value exists in the run.

As the definition suggests, unique validity is satisfied in weak BA with respect to any
chosen external predicate. This allows for the application level to determine the desired
properties, and choose the relevant external predicate accordingly. As a simple example, one
can think of a predicate that specifies that a value is valid if it is signed by at least t + 1
processes stating that this value was their initial value. In this scenario, unique validity
yields exactly the common strong unanimity property on the underlying signed values.

In fact, unique validity is a useful tool when designing distributed algorithms as it allows
to use BA as a framework. Different applications may require different validity conditions,

84

S. Cohen, I. Keidar, and A. Spiegelman

yet still unique validity prevents the system from having a trivial solution in the presence
of Byzantine processes. Note, in addition, that every solution to BA with external validity
property immediately solves weak BA.

4 Related Work

The starting point of this work goes back to 1985 when Dolev and Reischuk proved two
significant lower bounds for the Byzantine Broadcast problem. Specifically, they have studied
the worst-case message complexity over all runs and proved it to be Q(nt). Moreover, in the
authenticated model, which was somewhat undeveloped at the time, they proved a lower
bound of Q(nt) signatures — even in a failure-free run.

Since the publication of their fundamental results, the paradigm of complexity measure-
ment has shifted. The number of messages is of little importance nowadays, compared to
the number of words it entails. The total number of words (the communication complexity)
better reflects the load on the system and is commonly used today when analyzing distributed
algorithms. For example, Dolev and Reischuk presented in their paper a BB algorithm that
matches their messages’ lower bound. It requires O(nt) messages, but as a single message
can be composed of many different signatures it requires a cubic number of words. It was
not until recently that a solution with quadratic communication complexity was presented
for synchronous BA with optimal resilience [13].

Dolev and Reischuk’s complementary lower bound on signatures does not translate to
a bound on the communication complexity of an algorithm. Only a few years after Dolev
and Reischuk’s work, the threshold signature scheme was introduced [8]. This scheme allows
multiple signatures to be compacted into a single combined signature of the same size. That
is, a single word can carry multiple signatures. In this work, we focus on the communication
complexity of the BB and BA problems while taking advantage of such schemes.

To make our algorithms efficient in real-world systems, we adjust the complexity to
match the actual number of faults. Moreover, we do so without compromising the worst-case
complexity. If all ¢ possibly Byzantine processes crash, the complexity of our algorithms is
O(nt). However, in most runs, where systems do not exhibit the worst crash patterns, the
complexity is much lower. In fact, it is linear in the number of faults times n.

While consensus algorithms were designed to be adaptive in the number of failures
over 30 years ago [10], these works focus on the number of rounds that it takes to reach a
decision rather than on communication complexity. A special case of adaptivity is focusing
on failure-free runs. This problem was addressed both by Amdur et al. [3] (only for crash
failures) and by Hadzilacos and Halpern [12]. However, both works measure the number of
messages rather than words and have sub-optimal communication complexity.

A recent work by Spiegelman [16] tackled the problem of adaptive communication
complexity in the asynchronous model. It presents a protocol that achieves correctness in
asynchronous runs and requires O(ft + t) communication in synchronous runs. However,
due to the need to tolerate asynchrony, its resilience is only n > 3t + 1. This solution relies
on threshold signatures schemes, as we do.

As noted also by Momose and Ren [13], designing optimally-resilient protocols for the
synchronous model limits the use of threshold signatures. While this primitive has been used
in various eventually synchronous and asynchronous works over the last few years [1, 16, 14, 6],
usually with a threshold of n—t. Using this threshold in settings with resilience n = 3t+1, we
get certificates signed by at least t+1 correct processes. However, for a resilience of n = 2t+1,
this is no longer the case. The threshold signatures “lose” their power as n —t =t + 1 for

85

Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

which no intersection properties between correct processes signing two distinct certificates
can be derived. In this work, we exploit threshold signatures with this improved resilience by
carefully choosing a better threshold for our needs, as we discuss in Section 6. We mention
that although not using threshold schemes, Xiang et al. [17] also benefit from collecting more
than n — t signatures in some scenarios.

5 From Weak BA to Adaptive Byzantine Broadcast

In this section we study the BB problem, and optimize its adaptive communication complexity
over all runs. We present a new BB protocol with resilience n = 2t + 1 and adaptive
communication complexity of O(n(f + 1)).

Recall that in the BB problem there is only one sender who aims to broadcast its initial
value and have all correct processes agree on it. If the sender is Byzantine, it may attempt to
cause disagreement across correct processes. There is a known simple and efficient reduction
from BB to strong BA. Given a strong BA solution, the designated sender starts by sending
its value to all processes, and then they all execute the BA solution and decide on its output.
It is easy to see that if the sender is correct, all correct processes begin the strong BA
algorithm with the same input, and by strong unanimity they then decide upon the sender’s
value.

However, trying to apply the same reduction from BB to weak BA no longer works. If
the sender is Byzantine, the correct processes do not have a valid initial value for the BA.
Nonetheless, in this section we present a reduction from BB to weak BA!, which incurs a cost
of O(n(f + 1)) words. Thus, together with an adaptive weak BA with the same complexity,
we obtain a synchronous adaptive BB algorithm with a total of O(n(f + 1)) words and
resilience n = 2t + 1. At this point we assume that such adaptive weak BA is given as a
black box. An implementation for this primitive is presented in Section 6.

Algorithm 1 BB algorithm: code for process p;, sender’s input is Vsenedr

Initially v;, val, decision, ba__decision = L

Round 1:
if sender = p; then
send (Vsender)sender t0 all
if received message (v)sender from sender then
V; <v>sender
for j =1tondo
val + invokePhase(j, v;)
if val # L then
v; < val

ba__decision < weak BA with BB_wvalid predicate and initial value v;
if ba__decision is of the form (v)sender then
decision < v
: else
decision < L

= =
Bl > vl

1 This reduction only works if n > 2t + 1.

86

S. Cohen, I. Keidar, and A. Spiegelman

Our algorithm, presented in Algorithms 1 and 2, is composed of three parts. The first
part (lines 1 — 4 in Algorithm 1) is the first round in which the leader disseminates its value.
Processes that receive that value adopt it as their BA initial value (line 4). The second part
(lines 5 — 8 in Algorithm 1 and Algorithm 2) is a “vetting” part. It consists of n phases, with
a rotating leader. Leaders initiate phases to learn about the first part’s initial value. Finally,
the third part (lines lines 9 — 13 in Algorithm 1) is a weak BA execution.

Deciding upon the weak BA output takes care of the agreement and termination properties.
It is left to (1) satisfy the BB validity property and (2) make sure that the preconditions for
the weak BA hold, that is, each correct process has a valid input to propose. To achieve these
properties, we define the BB_wvalid(v) predicate in the following way. BB_wvalid(v) = true if
and only if v is signed by either the sender or by ¢ + 1 processes.

Note that if the sender happens to be Byzantine, it is acceptable to decide on any value.
However, it is important to make sure that if the sender is correct, then the only valid value
is its initial BB input. Simply setting a value to be valid only if it is signed by the sender
would not work, as it allows a faulty sender to cause a scenario in which there are no valid
values to agree upon by not sending its value to any process. Note that we cannot simply fix
this by introducing some default valid value: If we were to do so, it would be valid to agree
on that value also in the case of a correct sender, violating the BB validity condition.

Our algorithm makes sure that if the sender is correct, the second condition in the
BB__walid definition cannot be satisfied, and hence there is only one possible outcome to the
BA algorithm. However, if the sender is Byzantine, it is guaranteed that there is some value
to decide upon. That is, all correct processes start the weak BA with an initial value that
satisfies the predicate.

In the vetting part of the algorithm, we ensure that the above-mentioned conditions
hold. Moreover, we do so with a communication complexity that is adaptive to the number
of actual process failures. The core idea is to work in leader-based phases. Every phase
has a unique leader and is composed of a constant number of leader-to-all and all-to-leader
synchronous rounds. Every phase is initiated by a leader-to-all message. If the leader decides
not to send the initial message then no messages will be sent by correct processes in this
phase and we say that this phase is silent, and otherwise, it is non-silent. In our algorithm,
a phase is non-silent if the phase’s leader did not choose an initial value for the BA prior to
that phase.

In every phase, each process p; starts the phase with some initial value v; and if the phase
is non-silent it returns some value. The requirements from the phase are: (1) If the phase’s
leader is correct and the phase is non-silent, then all correct processes return a valid value.
(2) All correct processes return either L or a valid v. And (3) if the sender is correct, then
no correct process returns a value signed by ¢ + 1 processes.

Upon a non-silent phase, the leader starts by asking all processes for help by sending a
help__req message (line 16). A correct process that receives a help request message answers
the leader. If it has set a BA initial value, it sends it to the leader at line 19, and otherwise,
it sends a signed idk (i don't know) message at line 21. If the leader receives a value signed
by the designated sender it broadcasts it (line 24). Otherwise, if it receives ¢+ 1 idk messages,
it uses a threshold signature scheme to create an idk quorum certificate and broadcasts it
(line 27). A process that receives from the leader a value signed by either the sender or any
t + 1 processes returns it. Otherwise, it returns L.

At the end of each non-silent phase, a correct process that returns a v # 1 from the
phase, updates its local v; accordingly at line 8. This value at the end of the n'® phase is
the input for the weak BA algorithm. Since we execute n phases, all correct processes set

87

Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

valid values by the end of all phases. This is because once there is a correct process that did
not set a value it initiates its phase and then all correct processes return with a valid value.
At this point, all processes execute the weak BA and decide upon its output (line 9).

Algorithm 2 invokePhase(j,v;): code for process p;

14: leader<— p; mod n

Round 1:

15: if leader = p; and v; = 1 then

16: broadcast the message (help_req,) icader
Round 2:

17: if received (help_req, j)icader then
18: if v; # L then

19: send (v;, J) to leader
20: else
21: send (idk, j),, to leader
Round 3:
22: if leader = p; then
23: if received (v', j) s.t. v/ = (V) sender then
24: broadcast the message ((v)sendersJ)
25: else if received t + 1 unique signatures (idk, j),» then
26: batch these messages into QCiqk using a (¢ + 1, n)-threshold signature scheme
27: broadcast the message (QCix, j)
28: if received (v, j) from leader and BB_walid(v) =true then
29: return v
30: else
31: return |

5.1 Correctness

We start by proving the phase’s requirements. First, immediately from lines 29 — 31 we get
that all correct processes return either L or a valid v. Next, the following lemma shows that
in non-silent phases with correct leaders all correct processes return a valid value.

» Lemma 4. If a phase is non-silent and its leader is correct, then all correct processes
return a valid value.

Proof. If the leader is correct it broadcasts a help_req message at line 16. All correct
processes then answer at round 2. If the leader receives a value signed by the sender at
line 23, it broadcasts it at line 24. Otherwise, no correct processes received a value signed by
the sender and sends an idk message at line 21. Since n = 2t + 1, the leader receives at least
t + 1 idk messages (from the correct processes) and forms an idk certificate. It broadcasts
this value at line 27. In both cases, all correct processes return a valid value at line 29. <«

The next lemma proves that if all correct processes invoke a phase with a value other
than L, then they can return only one type of a valid value — a value signed by the sender.

» Lemma 5. If all correct processes invoke a phase with value v # 1, there does not exists a
value signed by t + 1 processes in the system.

88

S. Cohen, I. Keidar, and A. Spiegelman

Proof. If all correct processes invoke a phase with value v # L, they reply to the help_req
messages at line 19 and never send an idk message. Since there are at most ¢ Byzantine
processes, the leader cannot receive ¢t + 1 idk messages and form an idk certificate signed by
t + 1 different processes.

<

We now prove the correctness of the BB algorithm. First, to be able to use the weak BA,
all correct processes must execute it with valid initial values.

» Lemma 6. All correct processes execute line 9 with a valid initial value.

Proof. Let p; be a correct process. In n phases, there is one phase with p; as leader. If p;
has updated v; prior to that phase, it happened either line 4 or at line 8. Immediately from
the code we get that in both cases p; updates a valid value. If p; did not update a value, it
initiates a non-silent phase, and by Lemma 4 returns a valid value. <

Note that agreement and termination stem immediately from the code and the correctness
of the weak BA. The following lemma proves validity.

» Lemma 7. If sender is correct, then all correct processes decide Vsender-

Proof. If sender is correct then all correct process learn vgepnqer by the end of round 1 and
update their values at line 4. By Lemma 5, in no phase can any process create a value signed
by ¢t + 1 processes. Thus, when executing the weak BA vgepnger signed by the sender is the
only valid value that exists in the run. By unique validity and since the sender does not sign
more than one initial value, vsenger is the only possible BA output. It follows that all correct
processes execute line 11 and return the sender’s value.

<

We conclude the following theorem:

» Theorem 8. Algorithm 1 solves BB.

5.2 Complexity

We prove that the complexity of Algorithms 1 and 2 is O(n(f + 1)).

Each non-silent phase is composed of a constant number of all-to—leader and leader—to—all
rounds and thanks to the use of threshold signatures, all messages sent have a size of one
word. Thus, each phase incurs O(n) words. In total, there are potentially n phases. However,
it follows from Lemma 4 that after the first non-silent phase by a correct leader, all the
following phases with correct leaders are silent. Thus, the number of non-silent phases is
linear in f. We conclude that all phases in lines 5 — 8 use O(n(f + 1)) words. The complexity
of the weak BA black box is also O(n(f + 1)) (as we will show in the next section), resulting
in a total of O(n(f + 1)) words.

6 Adaptive Weak BA

In this section, we present a synchronous adaptive weak BA algorithm with resilience
n = 2t + 1. This algorithm is the missing link for the adaptive BB presented in the previous
section. Once again, we use the concept of phases and exploit the pattern of possible silent
phases. In this algorithm, the phases are slightly different and the decision to start a phase
as a leader depends on whether or not the leader has reached a decision in previous phases.

89

10

Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

Unlike the BB problem, in BA every process begins the algorithm with its own input
value. Communication-efficient solutions to this problem usually employ threshold signatures
schemes [1, 16]. This technique is widely used in asynchronous and eventually synchronous
protocols, with resilience n = 3¢t+1. In these contexts, one can use a scheme of (n—t)-out-of-n
signatures and benefit from the fact that any two such quorum certificates intersect by at
least t 4+ 1 processes, and therefore at least one correct process.

Unfortunately, when trying to apply the same technique to a system with resilience
n = 2t + 1, it fails. A correct process might be unable to obtain 2¢ 4+ 1 unique signatures on
any value as Byzantine processes might not sign it. On the other hand, a quorum certificate
with only ¢ + 1 unique signatures is not very useful as it does not guarantee the desired
intersection property.

Our first key observation is that the intersection property can be achieved as long
as we have {%t“] unique signatures. If we obtain this number of signatures out of
n = 2t + 1, safety is preserved in the sense that conflicting certificates cannot be formed by a
malicious adversary. Of course, there are runs in which we cannot reach that threshold since
[%M] >n —t (e.g., if t processes crash immediately as the run begins). But in this case,
f =%, and O(f) becomes asymptotically O(t). Hence, we can use a fallback algorithm with
O(nt) communication complexity.

As we assume that ¢t € ©(n), we can use Momose and Ren’s synchronous algorithm
that has O(n?) communication complexity [13] for the fallback. We denote that algorithm
Afaiipack- Note that their algorithm is “stronger” than our proposed algorithm as it provides
strong unanimity for validity (i.e., it solves strong BA). We can use their solution by checking
the validity of Afqipack’s output according to the predicate. If it is valid, this is the decision
value, and otherwise a default valid value is decided. Equipped with these insights, we next
present our algorithm.

During the phases part of the protocol, a correct process must commit a value before
reaching a decision. When it has certainty about a value it updates that value in a commit
variable, along a commit_proof of this commitment (a quorum certificate, signed by suffi-
ciently many processes) and a commit__level indicating the latest phase of a valid commitment
it heard of. Once a correct process commits to a certain value it can only commit to a value
for which it heard a valid commitment proof in a later phase during the run. That is, it
may decide on a value for which it did not send a commit message. Moreover, it may even
decide on a value it did not commit at all. For example, if it reaches the fallback and no
correct process has decided. Once a correct process reaches a decision it updates it in its
local decision variable as well as a matching quorum certificate in decide_ proof variable.

A single phase The code for a single phase is given in Algorithm 4. Each process p;
starts a phase with its initial value v; and information about possible previous commits
(commit, commit_proof, commit_level) and decisions (decision, decide__proof). Correct pro-
cesses return with updated information about commits and decisions that were made in
that phase (or prior to that). The guarantees of the phases are: (1) Every decision updated
during a phase is valid; (2) All decisions updated by correct processes are the same and there
exists at most one valid decide_proof in the system; and (3) If the phase’s leader is correct,
the phase is non-silent, and n — f > f%ﬁw, then all correct processes return with the same
valid decision.

Every non-silent phase starts with the leader broadcasting a propose message with its
value in line 32. Upon receiving this message, correct processes either vote for this value
by signing it (line 34) or answer with a value that was previously committed as well as its
commit quorum certificate and level (line 36). If the leader receives a committed value it

90

S. Cohen, I. Keidar, and A. Spiegelman

Algorithm 3 weak BA algorithm: code for process p; with initial value v;

Initially decision = undecided, bu__decision = v;, fallback__start < oo
decide__proof, commit, commit__proof, bu__proof, fallback__val, phase__decision = 1
commit_level < 0

:for j=1tot+1do

phase__decision, decide__proof, commit, commit_proof, commit_level <

invokePhase(j, v;, decision, commit, commit__proof, commit__level)

if decision = undecided and phase__decision # undecided then
decision < phase__decision

Round 1:

. if decision = undecided then

broadcast (help_req),,
Round 2:

7: if received (help_req), message and decision # undecided then

13:

14:
15:
16:
17:
18:
19:
20:

21:
22:
23:
24:
25:

27:
28:
29:

send (help, decision, decide proof),, to p’

. if received ¢ + 1 messages of (help_req), from different processes then
10:
11:
12:

batch these messages into QChaipack (v) using a (t 4+ 1, n)-threshold signature scheme
broadcast the message (fallback, QChaipack, decision, proof),,
fallback__start < now+ 26
Round 3:
if received (help, v, decide_proof),, with valid v and decide proof for v and decision =
undecided then
decision < v
bu_decision < decision
while fallback _start > now do
if received valid (fallback, QCtaiiback, v, Proo fp) then
if decision = undecided and proof, # L is a valid proof for a valid v then
bu_decision < v
bu_proof < proofy
if fallback start = oo then
broadcast the message (fallback, QChaipack, bu_decision, bu_proof)p,
fallback__start < now + 28
fallback wval <— Apgiipacr, with &' = 20 and initial value bu_ decision
if decision = undecided then
if fallback wval is valid then
decision < fallback _wval
else
decision <+ L

91

11

12 Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

Algorithm 4 invokePhase(j, vs, decision, decide__proof, commit, commit__proof, commit_level):

code for process p;

30

31:
32:

33:
34:
35:
36:

37:
38:
39:

40:
41:

42:

43:

44:
45:
46:
47:

48:
49:
50:

51:

52:
53:
54:

55:

leader<—p;j mod n

Round 1:

if leader = p; and decision = | then
broadcast the message (propose, v;,) icader

Round 2:

if received (propose, v, j)icqder With a valid v for the first time and commit = L then
send (vote, v, j),, to leader

else if received (propose, v, j)iecader and commit # L then
send (commit, commit,commit_proof, commit_level, j),, to leader

Round 3:
if leader = p; then
if received (commit, w, QCeommit(w), levelcommit, j)p then
broadcast the message (commit, w, QCommit (W), levelcommit, J) icader according to
the maximal level.ommic received
else if received [“H1*t1] messages of (vote, v, j),» then
batch these messages into QCeommit(v) using a ([2tA1] n)-threshold signature
scheme
broadcast the message (commit, v, QCeommit(V), 7, 1) tecader

Round 4:
if received (commit, v, QCeommit(V), levelcommit, J) icader and levelcommit > commit_level
and levelcommit is valid according to QCcommit(v) then

send (decide, v, j),, to leader

commyit <— v

commit_proof < QCcommit(v)

commit_level< levelcommit
Round 5:
if leader = p; then
ntlEL] messages of (decide, v, j),» then

batch these messages into QCfinalized (v) using a ({%HW ,n)-threshold signature

scheme

if received [

broadcast the message (finalized, v, QC¥inalized (V) 7) teader

if received (finalized, v, QC¥inalized (V), J) tcader then
decision < v
decide__proof+ QClinalized (V)

return (decision, decide__proof, commit, commit__proof, commit__level)

92

S. Cohen, I. Keidar, and A. Spiegelman

simply broadcasts it. Otherwise, if it manages to achieve the required (%ﬂ'q threshold of
signatures, it can form a quorum certificate committing its proposed value (line 40).

Note that at this point the committed value is not “safe enough” to be decided by correct
processes. Byzantine leaders may cause correct processes to participate in forming a commit
certificate for more than one value. As correct processes that have decided do not initiate
phases, they might never communicate without going through Byzantine leaders. Thus,
we need another level of certainty, in the form of the finalize certificate (to be stored in
decide__proof). Using the commit levels, we maintain the invariant that if a correct process

receives a valid finalize certificate, then no finalize certificate on another value can be formed.

Thus, after a correct process learns about a committed certificate with a level higher
than the previous commit, it sends a matching decide message to the leader (line 44) and
updates the commit information accordingly. If the leader receives the necessary threshold
of decide messages, it forms a finalize quorum certificate. Every process that receives such a
certificate can safely return the certificate’s value as its decision.

Main algorithm The BA algorithm is given in Algorithm 3, using the phase algorithm as
a building block. In our algorithm, all correct processes eventually decide by updating their
decision variable. However, they do not halt. In our BA algorithm, we start by executing
n phases with a rotating leader, ensuring that every correct process has a chance to reach
a decision before executing the fallback algorithm. After the phases end there are several
possibilities. First, if there are at most ”_TH Byzantine processes, all correct processes must
have decided. If there are more Byzantine processes, it may be the case that some correct
processes decided and others did not. This could happen, for example, if a Byzantine leader
causes the single correct leader to decide and not initiate its phase. By the phase guarantees,
we know that all correct processes that decide by this point, decide the same valid value.

To address the case where not all correct processes decided, we have processes that have
not decided ask for help from all other processes (line 6). If a correct process has decided
and receives a help_ req message, it answers with a help message including the decision value
along with its proof at line 8. Note that in this round, the number of messages sent by
correct processes is linear in the number of help requests. Specifically, if only Byzantine
processes send help__req messages, the number of answers is O(nf) and independent of t.

We note that if ¢ + 1 help requests are sent, then at least one of them is sent by a correct
process that did not manage to form quorum certificates when it served as leader. Thus, in
this case, f € ©(t), and we can execute the fallback algorithm. To make sure that all correct
processes participate in the fallback algorithm, a fallback certificate with ¢ + 1 signature is
formed.

We now encounter a new challenge. We must have all correct processes start a synchronous
fallback algorithm at the same time. However, an adversary can form the fallback certificate
and deal it to only some correct processes. This scenario can happen, for example, if less
than ¢ + 1 help__req messages are sent, and the adversary adds ¢ help__req signatures of its
own. We thus require a correct process that receives a fallback certificate to broadcast it
(line 22). This ensures that whenever one correct process runs the fallback algorithm, all
of them do, but may still cause different correct processes to start the fallback at different
times. Nevertheless, we know that the starting time difference is at most the J it takes the
message to arrive. We therefore run the fallback algorithm with ¢’ = 24, ensuring that all
correct processes enter a fallback round before any of them exits from it.

Another subtle point is making sure that the fallback algorithm does not output a decision
value that contradicts previous decisions made by correct processes. For that reason we add
another 2§ safety window between getting notified about a fallback and initiating it. Correct

93

13

14

Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

processes that broadcast the fallback certificate attach their decision value and a proof (if
exists). In the 2§ safety window, processes that learn about a decision value in the system
adopt it as the initial value for the fallback algorithm (line 17). Recall that Asqupacr is a
strong BA protocol. If a correct process decides v prior to the fallback algorithm, all other
correct processes learn about v during the safety window. Then, by strong unanimity, they
all decide v.

Note that if the decision returned from Agipacr is not valid then it must be that strong
unanimity preconditions are not satisfied (since correct processes always have valid inputs)
and a default value is returned. Furthermore, whenever the strong unanimity precondition is
not satisfied, it follows that not all correct processes propose the same value. As a result,
there must exist more than one valid value in the run (the different correct proposals). And
the L default value is a valid weak BA output.

6.1 Correctness

We start by proving some lemmas about the phase’s guarantees. First, we prove that if the
decision is updated in a given phase, then its new value is valid.

» Lemma 9. If a correct process updates decision during invokePhase, then v is a valid
decision value.

Proof. If a correct process updates its decision value at line 53 of invokePhase then it must
have received a finalized certificate signed by [%’“W
process p’ signed the decide message for v at line 44. By the code, p’ signed the decide
message for v if it received a commit certificate signed by ["*;H] processes. Hence, at least
one correct process p” signed the vote message for v at line 34. By the code, this is possible

only if v is a valid value (line 33).

processes. Hence, at least one correct

<«

Next, we prove that all correct processes that update their decision variable do so the
same value. Moreover, at most one valid decide_proof can exist in the system. That is, a
Byzantine process cannot devise a decide_proof that conflicts with any other decide proof
known by correct processes.

» Lemma 10. All correct processes that update decision during invokePhase return the
same decision. In addition, at most one finalize certificate can be formed in all phases.

Proof. Assume that a correct process p; sets its decision value to v in phase [and another
correct process p; sets its decision value to w in phase k£ > [.

If k = [, then p; and p; set their decision value in the same round and they both receive a
finalize certificate signed by {%1 different processes. At least one correct process signed
both certificates and since correct processes sign at most one finalize message per phase,
v =w.

For the case where k > [: in phase [, p; receives a finalize certificate signed by {%"H]
different processes. Thus, at least [%’5“] —t > "_TH'I correct processes updated their
commit to v in that phase, along with a matching commit proof and commit level = [
(line 47). Since these processes are committed to v, they do not vote for any value proposed

by a leader in the following phases. Thus at most n — ¢t — ”_Tt“ = ”_TH correct processes
can sign a conflicting proposed value in any phase greater than /. Since "_TH +1 < (%MW ,

in any phase greater than [, no process can collect [%]

than v. Because processes that updated commit_level = | do not accept commitments on

signatures on any value other

94

S. Cohen, I. Keidar, and A. Spiegelman

values with d < (line 43), at most ”_TH can send a decide message on a value committed

in phase d < I. Thus, at most "_5_1 +1< ["+§+1] decide messages for w # v can be sent.

Finally, no process can form and send a valid finalize certificate and decide upon any other
value. Thus, v = w.
<

We prove next that once a correct process is the leader of a non-silent phase, all correct
processes return the same valid decision value by the end of that phase.

» Lemma 11. If a correct leader invokes invoke Phase in phase k and f < "_5_1, then all
correct processes return the same valid decision by the end of the phase and this decision is a

proposal of a correct process.

Proof. The leader broadcasts its value v to all processes. If there is a correct process p
for which commit # L, it sends the message (commit,w,proof, j), to the leader. If the
leader receives (commit,w, proof, j),» (from any process), it broadcasts in round 3 a commit
certificate for w. Otherwise, since f < "’5’1, leader receives [%”1] messages voting for
v and broadcasts a commit certificate for v. Then, all correct processes send the leader a

ntt+1 -
TW messages finalizing v and

finalize messages on v or w. Again, the leader receives (
broadcasts a finalize certificate for v. Correct processes receive this message and update their
decision and decide_proof accordingly. Then, by the code they all return v.

<

We now prove the correctness of the main BA algorithm. The following two lemmas
prove that although some processes may start executing Agipack at different times, they all
successfully execute the fallback algorithm.

» Lemma 12. If some correct process executes the fallback algorithm in Algorithm 3, all
correct process do so and they all start at most § time apart.

Proof. Let p be the first correct process that executes the fallback algorithm at line 24 of
Algorithm 3 at time ¢. This means that at time ¢t — 28, p broadcasts the fallback certificate
to all other processes (line 22). By synchrony, this certificate is guaranteed to arrive at all
correct processes by ¢ — §, causing them to execute the fallback algorithm by ¢ + ¢ if they
have not done so earlier. <

» Lemma 13. Consider a synchronous algorithm A. Let o be a synchronized run of A
defined as follows. Let t be the time that the first correct process starts executing A in o.
All correct processes start executing A by t + 8. The round duration is 26. In round r that
begins (locally) in t., round r messages are processed if they are received in the time window
[t, — 0,t, + 20]. Then o is a correct run of A.

Proof. Consider a process p that starts round r at time ¢£. Let p’ be another correct process
that starts round r at time tfr’/, and sends a message to p in round r. By assumption, tfn’/ =tPte

where —§ < ¢ < §, and a message sent by p’ at tﬁfl arrives at time ¢, where tfl <t, < tﬁ/ + 4.
Note that round r ends at p at time ¢}, = 2 + 20. Hence, t? — ¢ < t, < t2 4 20, as needed.

<

Next, we the following lemma states that if a correct process manages to reach a decision
prior to the fallback algorithm, then this is the only possible decision. Moreover, this decision
value must be a valid one.

95

15

16

Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

» Lemma 14. If some correct process decides v before executing the fallback algorithm, then
all correct processes decide v and v is valid.

Proof. If there exists a correct process p that decides at line 4, then by Lemma 10 and
the code all processes that decide at line 4 decide v as well. Moreover, all other correct
process that have not decided by line 5, send help_ req messages. Process p answers them
and they all decide at line 14. Otherwise, no correct process decides at line 4 and they all
send help__req messages at line 6. Then, they all receive ¢ 4+ 1 help messages and by the code
perform the fallback algorithm. In addition, by the lemma assumption, it must be that p
decides v at line 14.

If correct processes execute the fallback algorithm, then by the code they all wait a time
period of 2§ before the execution, during which they receive all decisions made by other
correct processes and update bu__decision accordingly (line 24). Specifically, they receive v
from p. It follows from Lemma 10 that bu_decision is updated with the same value at all
correct processes. Thus, all correct processes execute Ag,iipacr With the same input, and by
strong unanimity they set fallback_wval to v at line 24.

We now prove that v is valid. If p decides v at line 4, then it must have updated decision
in the scope of the relevant phase. By Lemma 9 this value is valid. Otherwise, if p decides
v at line 14, then the validity follows from the code. Hence, since v is valid, all correct
processes decide it by line 27.

<

Finally, we are ready to prove the required BA properties.
» Lemma 15 (Agreement). In Algorithm 3 all correct process decide on the same value.

Proof. First, by Lemma 10, all correct processes that decide in line 4 decide the same value
v. In addition, it follows from the same lemma that every correct process that decides at
line 14 after receiving a valid finalize certificate decides v, as at most one finalize certificate
can be formed.

It is left to show that if not all correct processes decide before the fallback algorithm at
line 24, they still decide upon the same value. If at least one correct process p receives a
fallback certificate it follows from Lemma 12 that all correct processes receive the certificate
within at most ¢ time of p. Then, by the code, all correct process execute the fallback
algorithm at line 24 and by Lemma 13 and the fallback algorithm solves strong BA, providing
agreement. By Lemma 14, we get that processes that decide before running the fallback
decide on the same value.

<

» Lemma 16 (Termination). In Algorithm 3 all correct process decide.

Proof. If not all correct processes decide before line 5 and no correct process receives a
fallback certificate, it follows that less than ¢ + 1 correct processes broadcast help messages
at line 6. Hence, at least one correct process p has decided by line 5. Process p receives all
of the correct help messages at line 7 and answers them at line 8. All correct processes that
asked for help then decide at line 14.

It remains to examine the case that at least one correct process p receives a fallback
certificate. It follows from Lemma 12 that all correct processes receive the certificate within
at most d time of p. Then, by the code, all correct process execute the fallback algorithm at
line 24 and by Lemma 13 and the fallback algorithm solves BA, providing termination.

<

96

S. Cohen, I. Keidar, and A. Spiegelman

» Lemma 17 (Unique Validity). In Algorithm 3 if a correct process decides v then either
v = L or validate(v) = true, and if v = L then more than one valid value exists in the run.

Proof. Let v be the decision value of a correct process in Algorithm 3. First, by lines 27 — 29
validate(v) = true or v = L. We prove that if v = L, then at least two valid values exist in
the run.

By the code, all processes execute the fallback algorithm with valid inputs (either their
initial valid values, or a valid value they adopt at line 19). By strong unanimity of Aysipack, if
all correct processes start with the same valid value v/, then v’ must be the returned decision
value. This contradicts the fact that L is returned at line 29. Therefore, not all correct
processes execute Afiipack With the same value. As they all execute the fallback algorithm
with valid inputs, it follows that at least two valid values exist in the run.

<

In addition, we need to prove that every correct process updates its decision at most
once.

» Lemma 18. In Algorithm 3 all correct processes decide at most once.

Proof. Any correct process updates decision at line 4, line 14 or lines 27 — 29. In all cases,
it only does so if decision = undecided. Since by the code it does not update decision to the
value undecided, it follows that decision is updated at most once.

<

From Lemmas 15, 16, 17, and 18 we conclude:

» Theorem 19. Algorithm 8 solves weak BA.

6.2 Complexity

We show that if f < "’5’1, correct processes never perform the fallback algorithm.

» Lemma 20. If f < "‘;_1, correct processes never perform the fallback algorithm.

Proof. In Lemma 11 we prove that if a correct process is the leader of a non-silent phase
and f < "_TH, then all correct processes return the same valid decision. Since Algorithm 3
is composed of n phases, every correct process has a chance to invoke its phase and all
correct processes decide by line 4. Assume by way of contradiction that there exists a correct

process that invokes the fallback algorithm. By the code, it has received a fallback certificate.

However, such a certificate can only be formed by ¢ 4+ 1 unique help_ req signatures, meaning
that at least one correct process sent a help_ req message. But this is impossible if all correct
processes decide by line 4.

<«

Each phase is composed of a constant number of all-to—leader and leader—to—all rounds.

Thus, it incurs O(n) words. Potentially, there are n phases. However, Lemma 11 proves that
n—t—1

2)
all correct processes decide by the end of that phase. Since correct leaders that had already
decided do not invoke their phases (their phases are silent), the number of invoked phases
depends on f itself. Thus, all phases combined send O(n(f + 1)) words.

After n invokePhase invocations end, help request messages are sent only by correct

once a correct leader invokes invokePhase() and the number of actual failures is f <

n—t—1

processes that did not decide. By the above-mentioned lemma, it happens only if f > *=

97

17

18

Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

In this case, f = ©(n) and since ¢t = O(n) it holds that O(nf) = O(n?). Correct processes
that decide by this point answer directly to whoever sent them help requests, without affecting
the asymptotic complexity. If some correct process receives a fallback certificate, another
all-to-all round is added, keeping the complexity O(n?). All other communication costs are
incurred in the fallback algorithm, whose complexity is also O(n?).

7 Strong BA: the failure-free case

Recall that the optimal resilience for strong BA is n = 2t 4+ 1. In this section, we present a
binary strong BA protocol that has a communication complexity of O(n) in the failure-free
case. Otherwise, it has complexity O(n?). The question of whether an adaptive protocol
with O(n(f 4+ 1)) complexity can be designed for strong BA with optimal resilience remains
open.

In the algorithm, presented in Algorithm 5, a single leader first collects all initial values.
Since we solve binary agreement, in the failure-free case there must be a value proposed by
t + 1 different processes. Thus, the leader can use a threshold signature scheme to aggregate
a quorum certificate on this proposed value.

As a second step, the leader sends this certificate to all processes and attempts to collect
n different signatures on the value. If it succeeds, it broadcasts it. Every process that receives
a signed-by-all certificate can safely decide upon its value. If a correct process does not
decide, it broadcasts a fallback message. Every process that hears such a message, echoes it
at most once, and executes Afqpqack after 20 time with 26-long rounds, as in Section 6.

7.1 Correctness

» Lemma 21. If some correct process executes the fallback algorithm in Algorithm 5, all
correct processes do so and they all start at at most § time apart.

Proof is similar to Lemma 12 in Section 6.
» Lemma 22 (Agreement). In Algorithm & all correct processes decide on the same value.

Proof. First, as correct processes only sign one decide message, every process that receives
QClecide (V) Teceives the same quorum certificate. Thus, all correct processes that decide at
line 14 decide the same v. If at least one correct process receives a fallback message then by
Lemma 21, they all execute the fallback algorithm at most 0 time apart. Thus, if at least
one correct process decides at line 14, then all correct processes that have not yet decided
learn about v in the 2§ safety window, and adopt it as their initial value for the fallback
(line 23). Tt follows that all correct processes decide with the same input value v and by
strong unanimity this is the only possible decision.

<

» Lemma 23 (Termination). In Algorithm 5 all correct processes decide.

Proof. If not all correct processes decide by line 14, then a correct process broadcasts a
fallback message at line 17. It follows from Lemma 21 that all correct processes receive the
certificate within at most § time of p. Then, by the code, all correct processes execute the
fallback algorithm at line 28 and by Lemma 13 and the fallback algorithm solves strong BA,
providing termination. <

» Lemma 24 (Validity). In Algorithm 5 if all correct processes propose the same value v,
then the output is v.

98

. Cohen, |. Keidar, and A. Spiegelman

Algorithm 5 strong BA algorithm: code for process p; with initial value v;

@ gk W

-~

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:
26:
27:
28:
29:
30:

Initially decision, proof, bu__decision, bu__proof, fallback _val = 1
fallback__start < oo

: leader < py

Round 1:

: send (v;)p, to leader

Round 2:

. if leader = p; then

if received ¢ + 1 messages of (v),s for some v then
batch these messages into QClropose (V) using a (t+1, n)-threshold signature scheme
broadcast the message (propose, v, QCpropose(V)) icader

Round 3:

. if received valid (propose, v, QCpropose(V)) icader then

send (decide, v),, to leader
Round 4:

: if leader = p; then
10:
11:
12:

if received n messages of (decide, v), then
batch these messages into QCyecide(v) using a (n, n)-threshold signature scheme
broadcast the message (decide, v, QClecide(V)) tcader

Round 5:
if received valid (decide, v, QClecide(V)) ieader and decision = L then
decision+— v
proof% checide(v)
else
broadcast the message (fallback, L, L),
fallback__start < now + 2§
bu_decision < decision
while fallback__start > now do
if received (fallback, v, proof,), then
if decision = L and proof,, # L is a valid proof for a valid v then
bu_decision < v
bu_proof < proofy
if fallback start = co then
broadcast the message (fallback, bu_ decision, bu_proof)p,
fallback__start < now + 20
fallback_val <= Afqlipack, With 6’ = 24 and initial value bu_ decision
if decision = L then
decision < fallback_val

99

19

20

Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

Proof. Correct processes only send decide messages on values with valid propose quorum
certificates. Note that such a quorum certificate can only be formed with ¢t + 1 unique
signatures. Hence, if all correct processes propose the same value v, then the only possible
propose quorum certificate is with v. As a result, the only possible decide quorum certificate
is with v as well.

The fallback algorithm is executed with either the original initial values or with a value
that has a corresponding decide quorum certificate. Thus, if correct processes execute the
fallback algorithm, they all start with v and by strong unanimity of Agsipack, the decision is
. <

Finally, we prove that every correct process updates its decision at most once.
» Lemma 25. In Algorithm 5 all correct processes decide at most once.

Proof. Any correct process updates decision either at line 14 or at line 30. In both cases, it
only does so if decision = L. Since it does not update decision to the value L at any step of
the algorithm, it follows that decision is updated at most once.

<

From Lemmas 22, 23, 24, and 25 we conclude:

» Theorem 26. Algorithm 5 solves binary strong BA.

7.2 Complexity

We show that if the run is failure-free, correct processes never perform the fallback algorithm.
» Lemma 27. If f =0, correct processes never perform the fallback algorithm.

Proof. If all processes are correct then they all send their initial values to the leader at line 2.
Since values are binary, and there are n = 2t + 1 processes, there must be a value v such
that the leader receives t 4+ 1 unique signatures on v. Then, the leader broadcasts a propose
certificate on v (line 6). Every correct process that receives this certificate replies with a
signed decide message at line 8. Since all processes are correct, the leader then receives n
signatures and then broadcasts a decide certificate on v (line 12). All processes then receive
this certificate and decide v at line 14. None of them sends a fallback message. <

By Lemma 27, if all processes are correct then they never perform the fallback algorithm,
and there are 4 all-to-leader and leader-to-all rounds, with a total of O(n) words. Otherwise,
the complexity is the complexity of the fallback algorithm, which is O(n?).

8 Conclusions and Future Directions

We have presented solutions for both Byzantine Broadcast and weak Byzantine Agreement
with adaptive communication complexity of O(n(f + 1)) and resilience n = 2t + 1. To
construct the weak BA algorithm, we utilized a threshold on the number of signatures
such that on one hand, this number is sufficient to ensure a safe algorithm with adaptive
communication in case there are not “many” Byzantine processes. On the other hand, failing
to achieve this threshold indicates that there is a high number of failures, which allows the
use of a quadratic fallback algorithm.

This weak BA algorithm is taken as a black box to construct our adaptive BB algorithm.
Here, we carefully choose the predicate for the validity property, to allow us to reduce one

100

S. Cohen, I. Keidar, and A. Spiegelman

problem to the other. Finally, for strong BA we propose a binary solution with optimal
resilience. Our solution is linear in 7 in the practically common failure-free case, and quadratic
in any other case. The question of whether a fully adaptive strong BA with optimal resilience
exists or not remains open.

While n = 2t + 1 is optimal for strong BA, this is not the case for BB and weak BA,
where any ¢ < n can be tolerated®. Thus, another possible future direction is improving
the resilience of an adaptive BB or adaptive weak BA to support any ¢ < n. Our weak BA
algorithm relies on the current resilience to satisfy that if f > n — {%le
in t. Note that this remains true for any resilience of n = at + 3, for a > 1, 3 > 0 without
compromising the intersection property required for safety. Should a quadratic solution
for weak BA be developed, it could be used to improve the total resilience of our adaptive
algorithm (instead of Momose and Ren’s algorithm [13]).

then f is linear

—— References

1 Ittai Abraham, Guy Golan-Gueta, and Dahlia Malkhi. Hot-stuff the linear, optimal-resilience,
one-message bft devil. CoRR, abs/1803.05069, 2018.

2 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated
asynchronous byzantine agreement. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 337-346, 2019.

3 Eugene S Amdur, Samuel M Weber, and Vassos Hadzilacos. On the message complexity of
binary byzantine agreement under crash failures. Distributed Computing, 5(4):175-186, 1992.

4 Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In
International conference on the theory and application of cryptology and information security,
pages 514-532. Springer, 2001.

5 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In Annual International Cryptology Conference, pages
524-541. Springer, 2001.

6 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople:
Practical asynchronous byzantine agreement using cryptography. Journal of Cryptology,
18(3):219-246, 2005.

7 Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a coincidence: Sub-quadratic
asynchronous byzantine agreement whp. In 34th International Symposium on Distributed
Computing (DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum fir Informatik, 2020.

8 Yvo Desmedt. Society and group oriented cryptography: A new concept. In Conference on
the Theory and Application of Cryptographic Techniques, pages 120-127. Springer, 1987.

9 Danny Dolev and Riidiger Reischuk. Bounds on information exchange for byzantine agreement.
Journal of the ACM (JACM), 32(1):191-204, 1985.

10 Danny Dolev, Ruediger Reischuk, and H Raymond Strong. Early stopping in byzantine
agreement. Journal of the ACM (JACM), 37(4):720-741, 1990.

11 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP 17, New York, NY, USA, 2017. ACM. URL: http:
//doi.acm.org/10.1145/3132747.3132757.

12 Vassos Hadzilacos and Joseph Y Halpern. Message-optimal protocols for byzantine agreement.
Mathematical systems theory, 26(1):41-102, 1993.

13 Atsuki Momose and Ling Ren. Optimal communication complexity of authenticated byzantine
agreement. In 35th International Symposium on Distributed Computing (DISC 2021). Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, 2021.

2 For weak BA, this stems from the resilience for external validity.

101

21

22

Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

14

15

16

17

Oded Naor and Idit Keidar. Expected linear round synchronization: The missing link for
linear byzantine smr. In 34th International Symposium on Distributed Computing (DISC
2020). Schloss Dagstuhl-Leibniz-Zentrum fiur Informatik, 2020.

Victor Shoup. Practical threshold signatures. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 207-220. Springer, 2000.

Alexander Spiegelman. In search for an optimal authenticated byzantine agreement. In 35th
International Symposium on Distributed Computing (DISC 2021). Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik, 2021.

Zhuolun Xiang, Dahlia Malkhi, Kartik Nayak, and Ling Ren. Strengthened fault tolerance in
byzantine fault tolerant replication. In 2021 IEEFE 41st International Conference on Distributed
Computing Systems (ICDCS), pages 205-215. IEEE, 2021.

102

Chapter 3

Conclusion and Open Questions

3.1 Conclusion

In this thesis, we have delved into the realm of distributed systems, which are computer
systems comprising multiple independent processes working together towards a common
goal. These systems have gained immense popularity, with billions of users relying
on them daily. The inherent advantage of distributed systems lies in their ability to
offer enhanced scalability, fault tolerance, and reliability when compared to centralized
systems.

Our exploration encompassed various models with changing timing assumptions and
different communication methods. The connecting thread of our work is dealing with
Byzantine users. Unlike crash failures, where processes cease to respond, Byzantine
failures encompass arbitrary deviations from the protocol. In this area, we aimed to
develop distributed services capable of operating effectively even under the most adverse
user behaviors.

The utilization of distributed systems has witnessed a surge in recent decades, with
blockchains emerging as a prominent use case. These decentralized and distributed
digital ledgers record transactions across a network of computers. As these systems
gain traction among a growing user base, ensuring properties like reliability and scala-
bility encounters new challenges and Byzantine behavior is more likely to happen. To
address these challenges, we have extensively studied diverse algorithms and primitives
of distributed computing (Figure 3.1). By doing so, we have shed light on the design
and implementation of distributed services that excel in providing reliability and scal-
ability in the face of arbitrary faults. In conclusion, this thesis has contributed novel
solutions and insights in the field of distributed systems, specifically in the areas of
Byzantine Agreement (BA) algorithms, leader-rotation mechanisms, and asset transfer
primitives, as we now describe.

In the first work presented in Chapter 2.1 we addressed the challenge of breaking
the quadratic barrier of asynchronous Byzantine Agreement. Indeed, we have presented

the first sub-quadratic asynchronous BA algorithm. To accomplish this feat, we devised

103

Asset Transfer (Cryptocurrency)

State Machine Replication

Byzantine Agreement

Figure 3.1: Relation between various services. Each box can be implemented using the
primitives within it.

two key techniques that form the foundation of our algorithm.

The first technique involves the introduction of a shared coin algorithm, which relies
on a trusted Public Key Infrastructure (PKI) and leverages Verifiable Random Func-
tions (VRFs). This novel approach enables us to address the communication complexity
hurdle associated with Byzantine Agreement in an asynchronous setting. By utilizing
the shared coin algorithm, we can significantly reduce the overall computational costs
involved.

Furthermore, we formalized the concept of VRF-based committee sampling specifi-
cally for the asynchronous model, marking a significant advancement in the field. This
formalization provides a structured framework for sampling committees using VRFs,
which is crucial for achieving sub-quadratic communication costs in our algorithm.

The algorithm we have developed only solves the Byzantine Agreement problem
with high probability. It raises intriguing questions regarding the possibility of achiev-
ing a probability of 1 for certain properties while still maintaining the desired sub-
quadratic communication cost. Exploring this possibility would contribute to a deeper
understanding of the problem’s inherent characteristics and potentially lead to further
optimizations in future research.

The subsequent work that deals with different variations of the Byzantine Agree-
ment problem (Chapter 2.4) focuses on the synchronous model and aims to redefine the
possibilities under this model. In that work, we have presented novel solutions for both
Byzantine Broadcast (BB) and weak Byzantine Agreement with adaptive communica-
tion complexity of O(n(f + 1)) and resilience n = 2t + 1. In constructing the weak BA
algorithm, we employed a threshold signature scheme, where the number of signatures
is strategically chosen to serve two purposes. Firstly, this threshold ensures the algo-
rithm’s safety and adaptive communication complexity when the number of Byzantine
processes is not significant. Secondly, failing to meet this threshold indicates a high
number of failures, prompting the utilization of a quadratic fallback algorithm.

Taking advantage of the developed weak BA algorithm as a black box, we proceeded

104

to construct our adaptive BB algorithm. The weak BA problem is defined, among other
properties, by a validity predicate for the required decision output. When designing the
BB protocol, careful consideration was given to selecting this predicate, allowing us to
establish a reduction between the two problems. Furthermore, for a strong Byzantine
Agreement, we proposed a binary solution with optimal resilience. In the absence of
failures, our solution achieves linearity in n, which is practically desirable. However, in
any other case, the communication complexity becomes quadratic.

In another work (Chapter 2.3) we shift and study the State Machine Replication
problem. The SMR landscape has witnessed significant influence from blockchain ad-
vancements, with many cutting-edge blockchain-SMR, solutions built upon two core
pillars: Chaining and Leader-rotation that capture the changing leaders that drive
the decisions within the protocol. However, the conventional round-robin mechanism
employed for Leader-rotation presents an undesirable behavior, where crashed parties
repeatedly assume the role of leaders, thereby impeding overall system performance.

In the discussed work, we have presented a new framework for Leader-Aware SMR
that encompasses several desirable properties, notably formalizing the requirement of
Leader-utilization. This requirement sets bounds on the number of rounds in crash-only
executions where faulty leaders are allowed, thereby addressing the aforementioned
limitation.

To achieve this Leader-Aware SMR, we have introduced Carousel, a novel reputation-
based Leader-rotation solution. The key challenge in implementing adaptive Leader-
rotation lies in the absence of consensus to determine a leader, as consensus itself de-
pends on a designated leader. Leveraging the available on-chain information, Carousel
determines a leader, ensuring system liveness despite this inherent difficulty. Through
integration with a HotStuff implementation, Carousel has showcased remarkable per-
formance enhancements. In faultless settings, it has achieved a throughput increase of
over 2x, while in the presence of faults, it has provided an exceptional 20x increase in
throughput and a 5x reduction in latency.

Finally, in Chapter 2.2 the wide interest in blockchains has led us to research the
asset transfer primitive, which is the core problem solved by blockchains. We consider
the shared memory model that is somewhat overlooked in this context. The explo-
ration of the asset transfer problem in this model opened new research directions and
expanded the understanding of concurrent shared-memory objects used by Byzantine
processes. Our work led us to develop the concept of Byzantine linearizability, a spe-
cialized correctness condition designed to accommodate shared memory algorithms that
can effectively withstand Byzantine behavior. Utilizing this notion, we undertook the
task of establishing comprehensive upper and lower bounds for a variety of fundamental
components in the field of distributed computing.

Through rigorous analysis, we demonstrated that atomic snapshot, reliable broad-
cast, and asset transfer are all problems that lack f-resilient emulations from registers

when the number of processes n satisfies n < 2f. Conversely, we contributed an

105

algorithm for Byzantine linearizable reliable broadcast, exhibiting a higher resilience
threshold with n > 2f. Leveraging this algorithm, we further constructed a Byzantine
snapshot with the same resilience capabilities. Notably, this Byzantine snapshot offers
valuable applications, including the provision of a Byzantine linearizable asset transfer.
Consequently, we established a tight bound on the resilience of emulations for asset
transfer, snapshot, and reliable broadcast.

While our paper primarily focuses on feasibility results, we consciously chose not
to delve into complexity measures. Specifically, our constructions assume unbounded
storage. As a result, the matter of efficiency remains an open question, providing an
opportunity for future research and exploration.

Overall, this thesis has significantly contributed to the field of distributed systems by
introducing efficient BA algorithms, innovative leader-rotation mechanisms, and novel
approaches to asset transfer in shared-memory models. The utilization of cryptographic
tools, probability techniques, and careful analysis has provided valuable insights and
practical solutions for building robust and reliable distributed systems. The findings
presented in this thesis lay a solid foundation for future research and advancements in

the field, empowering the development of more efficient and secure distributed systems.

3.2 Additional Open Questions

In the context of this thesis, where several research questions have already been pre-
sented, it becomes evident that additional avenues of investigation arise, encompassing
both theoretical and practical aspects of distributed systems. These new directions
hold the potential to further enrich our understanding and contribute to the advance-
ment of the field. On the one hand, from a theoretical perspective, it is intriguing to
explore questions that delve into the intricacies of mathematical models, seeking to
refine existing frameworks, establish stronger theoretical foundations, and potentially
identify novel complexity bounds. On the other hand, within the realm of practical
system implementations, there is a pressing need to address challenges encountered
in real-world scenarios, such as scalability, fault tolerance, and resource management.
We present herein a collection of research directions that are worth exploring, in our

opinion.

3.2.1 Towards Efficient Byzantine Agreement

Adaptive communication with optimal resilience. In our recent work [CKS23|
we present an adaptive solution to Byzantine Broadcast and weak Byzantine Agreement
with adaptive communication complexity of O(n(f+1)) and resilience n = 2t+1. While
n = 2t + 1 is optimal for BA with strong unanimity, this is not the case for BB and
weak BA, where any ¢ < m can be tolerated. Strong unanimity requires that if all

correct processes propose the same value, this value must be decided. The challenge is

106

that while the leader-based approach is commonly used to achieve low communication
costs in synchronous protocols, it is unclear how to exploit it to solve strong unanimity.
Delegating one process with a unique role (and consecutively its initial value) forbids
us from acknowledging all initial values. On the other hand, requiring every process to
spread its value has quadratic cost in the system before even trying to solve the actual
problem.

In our work, we manage to solve BA with strong unanimity with resilience O(n) in
failure-free runs. This proves that there does not exist a lower quadratic lower bound
on communication (as exists for the number of signatures), but the question of whether

the adaptive solution can be designed for any number of failures f < t remains open.

Multi-valued sub-quadratic Byzantine Agreement. In our first work [CKS20]
we present the first sub-quadratic BA algorithm for an asynchronous message-passing
environment. This result relies on a primitive called shared coin, that we implement in
the paper, and returns all correct processes the same bite {0, 1}, with some constant
probability. Due to the use of the coin, our BA solution only works for a binary domain.
Le., the decision value must be either 0 or 1. This has various uses in distributed
systems, but in the context of blockchain systems, it cannot be used to decide upon
blocks’ order in the chain. To get one step closer to everyday use, we would like to
solve a multi-valued sub-quadratic BA algorithm, where decisions can be from a larger

domain. This is currently an open question.

107

108

Bibliography

[AGM18] Ittai Abraham, Guy Golan-Gueta, and Dahlia Malkhi. Hot-Stuff the Lin-
ear, Optimal-Resilience, One-Message BFT Devil. CoRR, abs/1803.05069,
2018.

[AMN*20] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin.
Sync HotStuff: Simple and practical synchronous state machine replica-
tion. In 2020 IEEE Symposium on Security and Privacy (SP), pages 106—
118. IEEE, 2020.

[AMS19] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically
optimal validated asynchronous byzantine agreement. In Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, pages 337—
346, 2019.

[BCCT19] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, Francois
Garillot, Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Al-
berto Sonnino. State machine replication in the Libra Blockchain. The
Libra Assn., Tech. Rep, 2019.

[CKS05] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in
Constantinople: practical asynchronous byzantine agreement using cryp-
tography. Journal of Cryptology, 18(3):219-246, 2005.

[CKS20] Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a coincidence:
sub-quadratic asynchronous byzantine agreement whp. In 34th Interna-

tional Symposium on Distributed Computing, 2020.
[CKS23] Shir Cohen, Idit Keidar, and Alexander Spiegelman. Make every word

count: adaptive byzantine agreement with fewer words. In 26th Interna-
tional Conference on Principles of Distributed Systems (OPODIS 2022).
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2023.

[CS20] Benjamin Y Chan and Elaine Shi. Streamlet: textbook streamlined blockchains.
In Proceedings of the 2nd ACM Conference on Advances in Financial Tech-
nologies, pages 1-11, 2020.

[DRS85] Danny Dolev and Riidiger Reischuk. Bounds on information exchange for
byzantine agreement. J. ACM, 32(1):191-204, January 1985.

109

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzan-
tine agreement. SIAM Journal on Computing, 12(4):656—-666, 1983.

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility
of distributed consensus with one faulty process. Journal of the ACM
(JACM), 32(2):374-382, 1985.

[GHM™*17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. Algorand: scaling byzantine agreements for cryptocurrencies.
In Proceedings of the 26th Symposium on Operating Systems Principles,
pages 51-68, 2017.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: analysis and applications. In Annual international conference on
the theory and applications of cryptographic techniques, pages 281-310.
Springer, 2015.

[GLT*20] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
Dumbo: faster asynchronous bft protocols. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
pages 803-818, 2020.

[KS11] Valerie King and Jared Saia. Breaking the O(n?) bit barrier: scalable
byzantine agreement with an adaptive adversary. Journal of the ACM

(JACM), 58(4):1-24, 2011.

[Kwol4] Jae Kwon. Tendermint: consensus without mining. Draft v. 0.6, fall, 1(11),
2014.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gen-
erals problem. ACM Trans. Program. Lang. Syst., 4(3):382-401, July 1982.

[MMR15] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-
free asynchronous binary byzantine consensus with ¢ < n/3, O(n?) mes-
sages, and O(1) expected time. Journal of the ACM (JACM), 62(4):31,
2015.

[MR20] Atsuki Momose and Ling Ren. Optimal communication complexity of
byzantine consensus under honest majority. arXiv preprint arXiv:2007.13175,
2020.

[MRV99] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random func-
tions. In Foundations of Computer Science, 1999. 40th Annual Symposium
on, pages 120-130. IEEE, 1999.

[Nak09] Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2009.
[NBMS20] Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman.

Cogsworth: byzantine view synchronization. In Proceedings of the Cryp-
toeconomic Systems Conference (CES’20), 2020.

110

[Rab83]

[Spi21]

[Teal

[YMR*19]

Michael O Rabin. Randomized byzantine generals. In 24th Annual Sym-
posium on Foundations of Computer Science (sfcs 1983), pages 403-409.
IEEE, 1983.

Alexander Spiegelman. In search for an optimal authenticated byzantine
agreement. In 35th International Symposium on Distributed Computing,
2021.

The Diem Team. Diembft v4: state machine replication in the diem blockchain.
https : //developers . diem . com/docs/technical - papers / state -

machine-replication-paper.html.

Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai
Abraham. HotStuff: BFT consensus with linearity and responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, pages 347-356, 2019.

111

SV DMNIN DXIONND NN PADY DIVANNT MP2IOV) DNMININ NNAY N NTAYN NIV
STPNIND OV MNMIND NPND MY MINAN MOIYNI NPIIT! MOPN 2393 MTNY ,MIPNKN
955 AUNR ,DVNNYN T8N NPNNIND DY ONIY DNDY MY NMS MIIYNI ANNN VIYn 0791
NOYNN DR "NNY” MDY 50Y PYSPIDA NYI YRNwn Hwnd 1o 0WN DNINN YHNNYN
AWAND YR PVIVIAN ITINT MTIOI DT NDN NMNNIND IYRD INIYVND 01 9N» NMNIND NIVNa
MAYNNM DININ DMPY DY VI NYNI MYNNND 1D DY JPMIPIY NN DI1yaD DVNNvND
2NN MHNTPNM NIAN2 PON DNPIID NN NPMPIYA MOPNN MDY O»TINYN D NNNA

2910 AMann

VI’ NNODN ,DANN NNDN DDV AN YN NPTIIND NPYA VIOV DY 1PTA NDNNN MDD
790NN AN MPY NIN 0NN NN 995Y . (Cryptocurrencies) DOINVDIP MYV
DNVN DIVNNNY RTNND MPYN .MOPN 92 Tyt NN DIANND NNOND DOMNNN DONN
DNODNN NYYa .NMMPY HY MYPA MIAPY DX IUN ANNN MIAYN DY Nt ITO MINK DIAPY
SV MNONN QR DY ,NaMYN NVONND YHND DO DXONN DY NXIAP NAY Py NN PV
5130 N9IN NN NINNND O9MVIP MYA0N DY ININRD PYIN .0PNTE 01OV 0NN
MYavNN NMYA NN NN NNN TIT IPITI NIN NPYIAN P2 WPN OO IR MNPO NAPO
NN INDD PN VI 953 NOIYNN ANNY TO ,D0ANN NNON 219OY MYNNNI NN D9INVIPN
DYMN MYNNINA NNAD N2 DXANN NNDN D9OYW N»Ya NN .DNVN MMPON OV NavnNn NN’
NOIYNN 2NN NN 7PON YOINY DDINY NOVONNN 2DV Y52V 75 ,1P0IAN NNODNN N»Y1 YV 0029

.NaN

YPIN NN NDNNN NN ,ININD IWNN DINNA HPDPDI TID? AR NN NNIDNN N»YYav Nd
NP0 SY DXNNNN MNIAN DXINT PIIID MNIN DY DNV DOTIN NPPD PO NNOON OV
OPWIDI-NN 0PV TNTPINONI MNINND NMNTPNNN DR WHTA YPIN)0 M .DNA PYan
DI9YN DN PYND DIVARNDT ,D29IMVPTP D91 NPNRIPRL VI DY DYD MyNNNI

PYAN PINAD NYITIN NNYPNN SY DNINI

191 MWI-NN INIOPON TPV NNODNY DIPINON TSN MYDID 1N MNA NMAXMY MNHINN
LMD OY9a MOPNN 990NY VTN NN DY PN NPIIVOY PYAY MNIDID DNINON
NTIAY Q0N .DOYNNN 190N TPINYD NN NMYPNN NP0 MOPN PN N3 NOIyna
NI Carousel. NIPIN DXANNN NNON D195 N»YIA2 "D1NIN NAONNY PNININ WD NN NINN
ST (DP0 DPNY) DPPN MNPY DY MYUPA YIMI NIYINDD NINN NNON Mvan
MYpa Tay> NPIDY TN NPNIN NOIYNN YN NN TAYN NPLIVI MOPN NOHY NI TN
NNON D195V NPYIAN PMIND J9IND NN DOINVYIPN MYAVHNN N»YYa NDAD .MMPD SV
0PN VAN, DTN .9MYN PIDT DY NNVYPN DTINa Pyan NN 0IPIN DR .DXIANNN
TN 0PV DONN D) OPPN DXIONND 92aAPNA DXVNYN IUN DPDAPN DVPPIIN NNYNID
PHIN NTW snapshot, DY DV DTN 1IN ,NT NN DVPPAIN TV YTN NNDY ININ NITHN

D VIDND DMNIDNN DININND 0NN G0N DININDI 29INVIP Yyavm Y10 DY

NPADM OO DNVNNL DIV MYNNINI MINANN MIIWNN DINND NNNN MDD ,D»oD
MNIN SY DY DOTIN NN TN MPHNY NMITH ,NPMIPIY MOPNI MTNYY MNINS
.D2N7) DPYMIANDMN DXOIMNVIP DI VI TIM ,NPNIDPD

ii

851

™MN SY NNX NOIYND TN DO DPNNNY O2PYNIN 901 N2 AWNN NIIWYN XD NININ NOIYN
TNN DIVPNN DM DY DP9INNY DMIPNI XYY D91 DONNN .NOMWYN NIV PYND
DYNNYN TINDD MYNYN Nt NON MOIYN .NI0NN NMIVND 20D Y110 Paynd »T1d NHWn DY

J3YOMPY IR NTOPON INIT IMPY D IO MOIYND MXIA) MNONT ONPNY 191N

,INY DM MPNIN NNVIN NI TN NIIYN NOYD NININ NIIYN DY OMOININ MNINN
TONNY NTAIYN NINN NIIYNA OV TS .MOYPN DY TTHNNND NOY NN 191 NMITH NNON
JDNPOOVNNYN NIYDY TYNND N1 N NNAVIN NPND 191D NOIYND 0N IPNX DN Tn?

NN AN MNN NN .NINAD MOWYN OV DN ARND NN (NPD2ADP0) NYITTHN NNON
YT DITID N9 NN IN,NTIAY YV NOTH NION MND DY MMVNON NN TTINNND NIIYN SV
NOIYND DXADN DIONN NPNTI DPARYN POIND 1N, .NTIAYN MNDI 1 THO NIy NNd

LDVNNYN SV INY 517 19002 TINND IR/ NIIYNN NI NN 19YD NIVNa

2WA0 PYNND NOIYNN NDID NN AN I PAND .MOPN 292 MTNY NI DWN INND Ty
SV NV DOYI MIND ,DTPNND NN NYPNIN)M MININD MND) NYNIAN N ,DIPN NN
YO8N Y TO YONNN J9IND MNY MOPN INND ANNY TN NYTO 2N 10 YY .NOIYNI 59NN

RN PANDN NN DXPADNN DNNIMION NN

MYNINNN MOPN OV MY DDIDT DIRNND MININ MOIYN SV DNV OPOVNNN DOTIN
DYDY NOIYNI DONN DAY /NDAp MYPR” MNIPIN MOPNA POy OpPon .O>YNNa
DMYYY DXPONN MINNND NPVIVA MOPN "NV MOPNA DPOIY DPON 1PN ,A0ND PPOND
P°0aNY DYDY D1V TOIONN ,OYND DPIVINAN 9 DY DN YITIV NNN NNV 1IN ININND
NIVN NNT DD 0NN NNNNNNY NNV 121N DY MYTIN MIOYI GN IN 1IN0 0OYNNY ,MyTin Movo
mMOPNN NN INND NN ,DAIPNN YA .NOIYNN YV HYIS D10 1i7van mMnoia Yand
92 DXTNIY P YN DNIMON NN, MOPNN DIOT NN PTINY 207 DY NN MYSNHNI

SAVAND ANV WD DIDTH

PV MOPNY DO MININ MOIYNI DNYPHY MDY PNAD DYPIN DN T N NTiaya
NPNONIV OV YTNN YWD NND TNPHNA ,DNINND O NYYA ANINN DT NON M1V VI
MOIYN DWHNYND DNPY PPOY .MNIVN P2 MRPOY NNOY HODPT MM J0v PYSpoa
VIPXaN 0y MTTINNNY MDY NINDI MOIYN NNVINI DNVNNRD D) DOTY Td ,0TN TN WK

.Jann

mmn

NOV NNINM TNDYNN NDMINN ,PNINN DY TP NXTY PNSYPS MNTIN NN WaND N3
292 N

ToNNA ONONM DPNG DY YNTPY DY HIIND NNONN IPNNN NP NTIN NPONR MIN
LMD YONIA DI PON DNYN OOY IPNNN

02OV NINRD .DDOVNNNN PRV TITYN DY SXNNAYNY YNIIYN NN PIDND DX N
DINND PIRYD OMNX NONT 'YV M2

VNPT TNNRD TOV NIMINN)17 1A PI N 120 MTIND NI AN, VN DM ,DPDD
125 NTNYHR DTN 2OV WINN MDD NNPN 2 TOW NITPRD ANNND .IF IR DIVOINY NN DY
DN NTIAY MYV ToNNA TN IPAIYY TO DY OINT ,JANIND 2950 1D

TPOINON IR TPRN DY DRI MION NIONIT VNI IOND PNIN NIDN 11DV NNON NTIN NN
PN PN DY OYTND NONIWN

AWNNN YTNS NVPAA TP TPTY NOMNID HY NNPNINA YA PPN

NNV MON»NN ,DNINMN DTIDY ,DINNIN NOIN 99D ,IPNND D N/PNNA AT NN N/92NN0
DTNN MNN 292 YANN SYTH APNNN NNINND NI NN 91D NYY) 101 DNTIP DAPNNY
NI NN NYYY DT NN PIMIRIN IPNHNN DY MPTN)0 10 INTPRD DIYN DY NPHIRD

TN MINK MIN 29D NI

NY->AN52) ©°DID IPNND PAMYI 12NNN NXHD DXINNNI 1NODMI N NN MNNIND I PON
PN NP2 NPIDTYN DIPMNDI IYN ,I2NNN DY ONOPTH IPNN NAPN ToNN2

Keren Censor-Hillel, Shir Cohen, Ran Gelles, and Gal Sela. Distributed computations in fully-
defective networks. In Alessia Milani and Philipp Woelfel, editors, PODC ’22: ACM Sympo-
sium on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages 141—
150. ACM, 2022.

Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a coincidence: sub-quadratic asyn-
chronous byzantine agreement WHP. In Hagit Attiya, editor, 34th International Symposium
on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference, volume 179
of LIPIcs, 25:1-25:17. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020.

Shir Cohen and Idit Keidar. Tame the wild with byzantine linearizability: reliable broadcast,
snapshots, and asset transfer. In Seth Gilbert, editor, 35th International Symposium on Dis-
tributed Computing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference),
volume 209 of LIPIcs, 18:1-18:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

Shir Cohen, Idit Keidar, and Oded Naor. Byzantine agreement with less communication:
recent advances. SIGACT News, 52(1):71-80, 2021.

Guy Goren, Lefteris Kokoris-Kogias, Alberto Sonnino, Shir Cohen, and Alexander Spiegel-
man. Proof of availability & retrieval in a modular blockchain architecture. In Financial
Cryptography and Data Security - 27th International Conference, 2023, 2023.

Shir Cohen, Rati Gelashvili, Eleftherios Kokoris-Kogias, Zekun Li, Dahlia Malkhi, Alberto
Sonnino, and Alexander Spiegelman. Be aware of your leaders. In Ittay Eyal and Juan A.
Garay, editors, Financial Cryptography and Data Security - 26th International Conference,
FC 2022, Grenada, May 2-6, 2022, Revised Selected Papers, volume 13411 of Lecture Notes
in Computer Science, pages 279-295. Springer, 2022.

Shir Cohen, Idit Keidar, and Alexander Spiegelman. Make every word count: adaptive byzan-
tine agreement with fewer words. In 26th International Conference on Principles of Dis-
tributed Systems (OPODIS 2022). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2023.

Konstantinos Chalkias, Shir Cohen, Kevin Lewi, Fredric Moezinia, and Yolan Romailler.
Hashwires: hyperefficient credential-based range proofs. Privacy FEnhancing Technologies
Symposium (PETS 2021), 2021.

NAPNN HNH OIMIAN OIMPY

PPN DY NN

ANINN NOAPO MWATH DV YPON "D DO
POMYAY NOMNT

15 VY

INAYY MYNOV DN — IOV VIV YIN
2023 »ov nan Yawnn Hnn

NAPNN HNH OIMIAN OIMPY

15 VY

