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Bb i?�i Bi +�M T`QpB/2 BM+`2�b2/ b+�H�#BHBiv- 7�mHi iQH2`�M+2- �M/ `2HB�#BHBiv +QKT�`2/ iQ
� +2Mi`�HBx2/ bvbi2KX

6�mHi iQH2`�M+2 Bb �M BKTQ`i�Mi T`QT2`iv BM /Bbi`B#mi2/ bvbi2KbX Ai `2T`2b2Mib i?2
�#BHBiv Q7 i?2 bvbi2K iQ bi�v +Q``2+i �M/ K�F2 T`Q;`2bb /2bTBi2 i?2 7�BHm`2b Q7 bQK2
bm#b2ib Q7 i?2 T`Q+2bb2bX h?2`27Q`2- Bi Bb BKTQ`i�Mi iQ KQ/2H i?2b2 7�BHm`2b BM i?2Q`2iB+�H
b2iiBM;b �M/ iQ +QMbi`m+i �H;Q`Bi?Kb i?�i T`QpB/2 i?Bb T`QT2`ivX

.Bz2`2Mi KQ/2Hb +�Tim`2 /Bz2`2Mi 7�BHm`2b Q7 i?2 T`Q+2bb2bX aQK2 ?�M/H2 +`�b?
7�BHm`2b- r?2`2 T`Q+2bb2b K�v biQT `2bTQM/BM;- �M/ bQK2 ?�M/H2 "vx�MiBM2 7�BHm`2bX h?2
H�ii2` /2b+`B#2b T`Q+2bb2b i?�i K�v /2pB�i2 �`#Bi`�`BHv 7`QK i?2 T`QiQ+QHX AM T�`iB+mH�`-
i?2v K�v +`�b?- 7�BH iQ b2M/ Q` `2+2Bp2 K2bb�;2b- �M/ b2M/ �`#Bi`�`v K2bb�;2bX AM #Qi?
+�b2b- Bi Bb +QKKQM iQ KQ/2H 7�BHm`2b #v �bbmKBM; �M �/p2`b�`v i?�i /2i2`KBM2b i?2
7�BHm`2 T�ii2`M �M/ iQ +QMbi`m+i �H;Q`Bi?Kb i?�i �`2 `2bBHB2Mi iQ i?2 rQ`bi@+�b2 T�ii2`MX

�MQi?2` BKTQ`i�Mi T`QT2`iv Bb b+�H�#BHBivX a+�H�#BHBiv +�Tim`2b i?2 �#BHBiv iQ �//
`2bQm`+2b iQ i?2 bvbi2K U2X;X- BM+`2�b2 i?2 MmK#2` Q7 T`Q+2bb2bV BM Q`/2` iQ BKT`Qp2 i?2
bvbi2KǶb T2`7Q`K�M+2 �M/fQ` iQ bmTTQ`i � #B;;2` MmK#2` Q7 mb2`bX AM bBKTH2` i2`Kb- Bi
`272`b iQ � bvbi2KǶb �#BHBiv iQ ;`Qr Q` 2tT�M/ BM bBx2 Q` +QKTH2tBiv iQ K22i +?�M;BM;
/2K�M/bX

AM i?Bb i?2bBb- r2 b22F iQ 2t�KBM2 b2`pB+2b i?�i �`2 BKTH2K2Mi2/ BM /Bbi`B#mi2/
bvbi2Kb �M/ i?�i �`2 T`QM2 iQ �`#Bi`�`v 7�mHibX h?2 mb2 Q7 /Bbi`B#mi2/ bvbi2Kb ?�b
BM+`2�b2/ BM i?2 H�bi /2+�/2b- rBi? � M2r mb2 +�b2 Q7 #HQ+F+?�BMb Ĝ /2+2Mi`�HBx2/ �M/
/Bbi`B#mi2/ /B;Bi�H H2/;2`b i?�i `2+Q`/ i`�Mb�+iBQMb �+`Qbb � M2irQ`F Q7 +QKTmi2`bX �b �
;`QrBM; +`Qr/ mb2b i?2b2 bvbi2Kb- ;m�`�Mi22BM; T`QT2`iB2b bm+? �b `2HB�#BHBiv �M/ b+�H@
�#BHBiv 7�+2b M2r +?�HH2M;2bX aBM+2 H�`;2 �M/ ;`QrBM; /2THQv2/ `2�H@rQ`H/ bvbi2Kb �`2
/Bbi`B#mi2/- Bi Bb BKTQ`i�Mi iQ bim/v /Bz2`2Mi �H;Q`Bi?Kb �M/ T`BKBiBp2b Q7 /Bbi`B#mi2/
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+QKTmiBM; i?�i T`QpB/2 i?2 �#Qp2@K2MiBQM2/ T`QT2`iB2bX AM i?Bb BMi`Q/m+iBQM +?�Ti2`-
r2 bi�`i #v T`2b2MiBM; i?2 b2`pB+2b /Bb+mbb2/ BM i?Bb i?2bBb Ua2+iBQM RXRVX L2ti- BM a2+@
iBQM RXk r2 +Qp2` i?2 #�+F;`QmM/ i?�i Bb i?2 bi�`iBM; TQBMi Q7 Qm` rQ`FX 6BM�HHv- BM
a2+iBQM RXj r2 #`B2~v ;Q Qp2` i?2 `2bmHib T`2b2Mi2/ BM i?Bb i?2bBbX

RXR ai�i2 J�+?BM2 _2THB+�iBQM- "vx�MiBM2 �;`22K2Mi- �M/
*`vTiQ+m``2M+v

aQK2 Q7 i?2 KQbi mb27mH T`BKBiBp2b BM /Bbi`B#mi2/ +QKTmiBM; �`2 ai�i2 J�+?BM2 _2THB@
+�iBQM UaJ_V- "vx�MiBM2 �;`22K2Mi U"�V- �M/ *`vTiQ+m``2M+B2bX aJ_ Bb � T`BKBiBp2
i?�i T`QpB/2b � 7�mHi@iQH2`�Mi b2`pB+2 mb2/ #v +HB2MibX Ai Bb +QKTQb2/ Q7 `2THB+�i2/
b2`p2`b i?�i QT2`�i2 BM � /2i2`KBMBbiB+ K�MM2` #v �+iBM; �b bi�i2 K�+?BM2bX Ai Bb /QM2
#v 2Mbm`BM; i?�i +Q``2+i `2THB+�b 7QHHQr i?2 b�K2 b2[m2M+2 Q7 bi�i2 i`�MbBiBQMbX h?2
bi�i2 i`�MbBiBQMb �`2 i`B;;2`2/ #v +HB2Mi `2[m2bib i?�i �`2 72/ BMiQ i?2 bvbi2KX AM i?2
+QMi2ti Q7 #HQ+F+?�BMb- QM2 mbm�HHv `272`b iQ �M aJ_ T`QiQ+QH �b i?2 i�bF Q7 � b2i Q7
T`Q+2bb2b �BKBM; iQ K�BMi�BM � ;`QrBM; +?�BM Q7 #HQ+FbX S`Q+2bb2b T�`iB+BT�i2 BM � b2@
[m2M+2 Q7 `QmM/b- �ii2KTiBM; iQ 7Q`K � #HQ+F T2` `QmM/X � #HQ+F +QMi�BMb � b2i Q7
+HB2MibǶ i`�Mb�+iBQMb �M/ bQK2 �//BiBQM�H K2i�/�i�- �b r2HH �b bQK2 BM7Q`K�iBQM i?�i
HBMFb i?2 #HQ+F iQ i?2 T`2pBQmb #HQ+Fb Ub22 6B;m`2 RXRVX

6B;m`2 RXR, "HQ+F+?�BM a+?2K2X

� "vx�MiBM2 �;`22K2Mi T`BKBiBp2 U"�V (GaS3k) Q7i2M b2`p2b �b i?2 K�BM #mBH/BM;
#HQ+F 7Q` +QMbi`m+iBM; �M aJ_ b2`pB+2X AM i?Bb T`Q#H2K- � b2i Q7 +Q``2+i T`Q+2bb2b �BK
iQ `2�+? � +QKKQM /2+BbBQM- /2bTBi2 i?2 T`2b2M+2 Q7 mT iQ t K�HB+BQmb U"vx�MiBM2V QM2bX
AM i?2 �#b2M+2 Q7 "vx�MiBM2 T`Q+2bb2b- i?Bb T`Q#H2K Bb �HbQ FMQrM �b i?2 +QMb2Mbmb
T`Q#H2KX lbBM; "� bQHmiBQMb- QM2 +�M BKTH2K2Mi aJ_ #v /2+B/BM; mTQM i?2 M2ti
bi�i2 i`�MbBiBQM U2X;X- i?2 M2ti #HQ+FV �i 2�+? TQBMi BM iBK2X

6BM�HHv- �MQi?2` rB/2Hv@mb2 T`BKBiBp2 Bb �bb2i i`�Mb72` U�HbQ +�HH2/ +`vTiQ+m``2M+vVX
Ai Bb mb2/ BM K�Mv �TTHB+�iBQMb (L�FyNc :>JYRd) �M/ �HHQrb 7Q` /Bbi`B#mi2/ K�M�;2@
K2Mi Q7 +HB2MibǶ �bb2ibX AM Bib KQbi #�bB+ 7Q`K- Bi T`QpB/2b 2�+? �++QmMi ?QH/2` i?2 �#BHBiv
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iQ i`�Mb72` �bb2ib iQ Qi?2` �++QmMib �M/ `2�/ QM2Ƕb #�H�M+2X PM2 r�v iQ BKTH2K2Mi �M
�bb2i i`�Mb72` Bb #v mbBM; aJ_- r?2`2 i?2 i`�Mb�+iBQMb �`2 i?2 7Q`K Q7 i`�Mb72``BM; i?2
�bb2ib- �M/ i?2 bi�i2 Q7 i?2 bi�i2 `2~2+ib i?2 #�H�M+2b Q7 /Bz2`2Mi mb2`bX h?�i Bb- �
#HQ+F+?�BM Bb � bT2+B}+ BKTH2K2Mi�iBQM Q7 �M �bb2i i`�Mb72`X "mi �b r2 2H�#Q`�i2 BM i?Bb
rQ`F- Bi Bb MQi i?2 QMHv 7Q`KX

h?2 �#Qp2@K2MiBQM2/ T`BKBiBp2b �`2 i?2 bi�`iBM; TQBMi Q7 i?2 `2b2�`+? i?�i �TT2�`b
BM i?Bb i?2bBbX aT2+B}+�HHv- "� TH�vb �M BKTQ`i�Mi `QH2 BM �HH Q7 i?2 T�T2`b BM+Hm/2/-
�M/ a2+iBQM RXk +Qp2`b i?2 T`BQ` rQ`F `2H�i2/ iQ BiX h?Bb b2+iBQM �HbQ T`QpB/2b � [mB+F
Qp2`pB2r Q7 /Bz2`2Mi KQ/2Hb mM/2` r?B+? i?Bb T`BKBiBp2- �HQM; rBi? Qi?2` /Bbi`B#mi2/
b2`pB+2b- �`2 #2BM; 2t�KBM2/X

h`�+BM; #�+F iQ i?2 #2;BMMBM; Q7 i?Bb BMi`Q/m+iBQM- /Bbi`B#mi2/ bvbi2Kb mbm�HHv
2K#Q/v bQK2 bQ`i Q7 bQHmiBQM iQ i?2 +QMb2Mbmb T`Q#H2KX �b r2 K2MiBQM2/- /Bbi`B#mi2/
bvbi2Kb �`2 MQi M2r �M/ BM 7�+i- "� ?�b #22M bim/B2/ 7Q` 7Qm` /2+�/2b MQrX >Qr2p2`-
mMiBH `2+2MiHv- Bi ?�b #22M +QMbB/2`2/ �i � 7�B`Hv bK�HH b+�H2X h?2 T`�+iB+�H mb2 +�b2b
Q7 "� BM H�`;2@b+�H2 bvbi2Kb KQiBp�i2 � Tmb? 7Q` `2/m+2/ +QKKmMB+�iBQM +QKTH2tBivX
h?Bb ;Q�H ?�b ;mB/2/ mb BM Qm` `2b2�`+? rQ`FX

RXk "vx�MiBM2 �;`22K2Mi, "�+F;`QmM/

�b � bi�`iBM; TQBMi- r2 #2;BM #v bi�iBM; i?2 MQi�iBQM mb2/ BM i?Bb rQ`FX q2 MQi�i2
i?2 MmK#2` Q7 T`Q+2bb2b BM � bvbi2K #v n �M/ mb2 i?2 H2ii2` t iQ /2MQi2 i?2 i?`2b?QH/
Q7 7�BHm`2b BM i?Bb bvbi2KX h?�i Bb- mT iQ t Qmi Q7 n T`Q+2bb2b K�v 7�BH �++Q`/BM; iQ
i?2 /Bb+mbb2/ �/p2`b�`B�H KQ/2H U+`�b?@7�mHi- "vx�MiBM2- 2i+XVX h?2 ?B;?2bi i?`2b?QH/
Q7 7�mHib i?�i +�M #2 K2i Bb +�HH2/ QTiBK�H `2bBHB2M+2 �M/ Bi p�`B2b BM /Bz2`2Mi KQ/2HbX
6Q` 2t�KTH2- BM � bvM+?`QMQmb KQ/2H rBi? i?2 QTiBK�H `2bBHB2M+2 Bb n ≥ 2t + 1 (.a3j)X

h?2 2{+B2M+v Q7 � T`QiQ+QH +�M #2 K2�bm`2/ #v Bib rQ`/ +QKTH2tBivX h?2 rQ`/
+QKTH2tBiv Q7 � /2i2`KBMBbiB+ "� T`QiQ+QH Bb /2}M2/ �b i?2 MmK#2` Q7 rQ`/b �HH +Q``2+i
T`Q+2bb2b b2M/ mMiBH � /2+BbBQM Bb `2�+?2/- r?2`2 � rQ`/ Bb � +QMbi�Mi MmK#2` Q7 #Bib
U2X;X- i?2 bBx2 Q7 � SEA bB;M�im`2VX Ai ?�b #22M b?QrM #v .QH2p �M/ _2Bb+?mF (._38)
i?�i BM /2i2`KBMBbiB+ �H;Q`Bi?Kb Ω(n2) rQ`/ +QKTH2tBiv Bb M22/2/ BM i?2 rQ`bi@+�b2-
�bbmKBM; t = O(n)X L2p2`i?2H2bb- �HKQbi �HH /2i2`KBMBbiB+ rQ`Fb BM+m` � rQ`/ +QK@
TH2tBiv Q7 �i H2�bi O(n3) BM � bvM+?`QMQmb KQ/2H rBi? i?2 QTiBK�H `2bBHB2M+2 (.a3jc
�JLYky)X AM 7�+i- i?Bb ;�T `2K�BM2/ QT2M 7Q` j8 v2�`b mMiBH `2+2MiHv JQKQb2 �M/
_2M (J_ky) bQHp2/ bvM+?`QMQmb "� rBi? QTiBK�H `2bBHB2M+2 rBi? O(n2) rQ`/bX Ai Bb
rQ`i? K2MiBQMBM; i?�i H2bb `2bBHB2Mi bQHmiBQMb rBi? O(n2) +QKTH2tBiv ?�p2 #22M FMQrM
T`BQ` iQ i?Bb `2bmHiX

u2i bvM+?`QMQmb bQHmiBQMb �`2 MQi `Q#mbi BM H�`;2@b+�H2 bvbi2Kb- r?2`2 K2bb�;2b +�M
#2 /2H�v2/ 7Q` 2ti2MbBp2 T2`BQ/bX � KQ`2 T`�+iB+�H �TT`Q�+? Bb iQ +QMbB/2` i?2 2p2M@
im�H bvM+?`QMv U1aV KQ/2H- r?2`2 +QKKmMB+�iBQM Bb BMBiB�HHv �bvM+?`QMQmb #mi 2p2M@
im�HHv #2+QK2b bvM+?`QMQmbX 1p2Mim�HHv bvM+?`QMQmb �H;Q`Bi?Kb �Hr�vb 2Mbm`2 b�72iv-
#mi i?2B` HBp2M2bb Bb +QM/BiBQM2/ QM +QKKmMB+�iBQM #2+QKBM; iBK2HvX AM i?Bb KQ/2H-
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T2`7Q`K�M+2 Bb K2�bm`2/ /m`BM; i?2 bvM+?`QMQmb T2`BQ/- �M/ i?2 QTiBK�H `2bBHB2M+2
Bb n = 3t + 1X _2+2Mi rQ`Fb ?�p2 mb2/ i?`2b?QH/ +`vTiQ;`�T?v BM Q`/2` iQ �+?B2p2
[m�/`�iB+ +QKTH2tBiv BM +2`i�BM QTiBKBbiB+ b+2M�`BQb (�:JR3c "**YRNc uJ_YRNc
:GhYkyc J_ky)X

"2+�mb2 �ii�+F2`b K�v +�mb2 +QKKmMB+�iBQM /2H�vb- �M 2p2M KQ`2 `Q#mbi �TT`Q�+?
Bb iQ +QMbB/2` � 7mHHv �bvM+?`QMQmb KQ/2HX "mi BM i?Bb KQ/2H- "� +�MMQi #2 bQHp2/
/2i2`KBMBbiB+�HHv (6GS38)X �Hi?Qm;? i?2 +QKTH2tBiv HQr2` #QmM/ /Q2b MQi �TTHv iQ
`�M/QKBx2/ �H;Q`Bi?Kb- mMiBH 7�B`Hv `2+2MiHv- `�M/QKBx2/ bQHmiBQMb �HbQ `2[mB`2/ U2t@
T2+i2/V O(n2) rQ`/ +QKTH2tBiv (_�#3jc *Eay8c JJ_R8c �JaRN)X

� 72r `2+2Mi bim/B2b ?�p2 mb2/ `�M/QKM2bb iQ +B`+mKp2Mi .QH2p �M/ _2Bb+?mFǶb
HQr2` #QmM/ �M/ T`QpB/2 "� bQHmiBQMb rBi? bm#@[m�/`�iB+ rQ`/ +QKTH2tBiv (EaRRc
:>JYRdc L�FyNc *Eakyc �:JR3c "**YRNc ErQR9c L"Jakyc aTBkR) BM �HH i?`22
iBKBM; KQ/2HbX AM ;2M2`�H- i?2`2 �`2 irQ �TT`Q�+?2b iQ mbBM; T`Q#�#BHBiv BM �+?B2pBM;
i?Bb ;Q�HX h?2 }`bi Bb r2�F2MBM; i?2 T`Q#H2K ;m�`�Mi22b iQ T`Q#�#BHBbiB+ QM2bX qQ`Fb
BM i?Bb p2BM mbm�HHv miBHBx2 +QKKBii22 b�KTHBM;- �bbmK2 �M �/�TiBp2 �/p2`b�`v- �M/
T`QpB/2 T`Q#�#BHBbiB+ b�72iv �M/ HBp2M2bb (EaRRc :>JYRdc L�FyNc *Eaky)X h?2 b2+QM/
+QMbB/2`b KQ/2Hb BM r?B+? /2i2`KBMBbiB+ "� bQHmiBQMb �`2 TQbbB#H2- �M/ /2bB;Mb T`QiQ+QHb
r?2`2 i?2 2tT2+i2/ +QKTH2tBiv Bb bm#@[m�/`�iB+ (�:JR3c "**YRNc ErQR9c L"Jakyc
aTBkR)X h?2 H�ii2` rQ`Fb �`2 `2bBHB2Mi QMHv iQ � bi�iB+ �/p2`b�`v r?2`2�b i?2 7Q`K2`
iQH2`�i2 � /vM�KB+ QM2X h?�i Bb- i?2v �`2 `2bBHB2Mi iQ �M �/p2`b�`v i?�i ?�b iQ /2+B/2
i?2 +Q``mTiBQM T�ii2`M #27Q`2 i?2 2t2+miBQM Q7 i?2 T`QiQ+QHX

RXj _2bmHib

h?2 }`bi rQ`F BM i?Bb i?2bBb- ǳLQi � *PAL+B/2M+2, am#@Zm�/`�iB+ �bvM+?`QMQmb "vx�M@
iBM2 �;`22K2Mi q>SǴ U*?�Ti2` kXRV- BMi`Q/m+2b i?2 }`bi bm#@[m�/`�iB+ "� �H;Q`Bi?K
7Q` �M �bvM+?`QMQmb K2bb�;2@T�bbBM; 2MpB`QMK2MiX h?Bb Bb � bB;MB}+�Mi BKT`Qp2K2Mi
Qp2` �H;Q`�M/ (:>JYRd)- QM2 Q7 i?2 H2�/BM; #HQ+F+?�BM +QKT�MB2b MQr�/�vbX q?BH2
�H;Q`�M/ Bb `2bi`B+i2/ iQ KQ/2Hb rBi? iBKBM; �bbmKTiBQMb- Qm` bQHmiBQM Bb +QKTH2i2Hv
7`22 Q7 i?2b2 HBKBi�iBQMbX h?Bb rQ`F i�F2b �/p�Mi�;2 Q7 +`vTiQ;`�T?B+ iQQHb Up2`B}�#H2
`�M/QK 7mM+iBQMb (J_oNN)V �M/ mb2b bm#iH2 T`Q#�#BHBiv i2+?MB[m2b iQ b?Qr i?�i rBi?
?B;? T`Q#�#BHBiv- � bm#@[m�/`�iB+ bQHmiBQM 7Q` i?2 "� T`Q#H2K Bb Q#i�BM2/X

AM � H�i2` rQ`F- ǳJ�F2 1p2`v qQ`/ *QmMi, �/�TiBp2 "vx�MiBM2 �;`22K2Mi rBi?
62r2` qQ`/bǴ U*?�Ti2` kX9V r2 7Q+mb QM � bvM+?`QMQmb KQ/2H �M/ i`v iQ `2/2}M2 r?�i
+�M #2 /QM2 mM/2` bm+? � KQ/2HX AM i?Bb rQ`F- r2 T`2b2Mi i?2 }`bi "� �H;Q`Bi?K
rBi? O(n(f + 1)) +QKKmMB+�iBQM +QKTH2tBiv �M/ `2bBHB2M+2 n = 2t + 1- r?2`2 t Bb
�M mTT2` #QmM/ QM T`Q+2bb 7�BHm`2b BM � `mM �M/ f Bb i?2 �+im�H MmK#2` Q7 T`Q+2bb
7�BHm`2bX q2 +�HH i?2 +QKKmMB+�iBQM +QKTH2tBiv i?�i /2T2M/b QM f `�i?2` i?�M QM t �M
�/�TiBp2 +QKTH2tBivX hQ �+?B2p2 i?Bb T`QT2`iv BM i?Bb rQ`F r2 i�F2 �/p�Mi�;2 Q7 �MQi?2`
+`vTiQ;`�T?B+ iQQH- +�HH2/ i?`2b?QH/ bB;M�im`2bX h?Bb iQQH �HHQrb iQ �;;`2;�i2 KmHiBTH2
bB;M�im`2b BMiQ QM2@rQ`/ K2bb�;2b �M/ Bb +QKKQMHv mb2/ rBi? � i?`2b?QH/ Q7 n− tX AX2X-
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i?2 MmK#2` Q7 ;m�`�Mi22/ +Q``2+i T`Q+2bb2b BM i?2 bvbi2KX lM7Q`imM�i2Hv- BM � bvbi2K
rBi? `2bBHB2M+2 n = 2t + 1- i?2`2 Bb MQi Km+? i?�i +�M #2 /QM2 rBi? i?Bb i?`2b?QH/X
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Abstract
King and Saia were the first to break the quadratic word complexity bound for Byzantine Agreement
in synchronous systems against an adaptive adversary, and Algorand broke this bound with near-
optimal resilience (first in the synchronous model and then with eventual-synchrony). Yet the
question of asynchronous sub-quadratic Byzantine Agreement remained open. To the best of our
knowledge, we are the first to answer this question in the a�rmative. A key component of our
solution is a shared coin algorithm based on a VRF. A second essential ingredient is VRF-based
committee sampling, which we formalize and utilize in the asynchronous model for the first time.
Our algorithms work against a delayed-adaptive adversary, which cannot perform after-the-fact
removals but has full control of Byzantine processes and full information about communication in
earlier rounds. Using committee sampling and our shared coin, we solve Byzantine Agreement with
high probability, with a word complexity of ÂO(n) and O(1) expected time, breaking the O(n2) bit
barrier for asynchronous Byzantine Agreement.

2012 ACM Subject Classification Theory of computation æ Distributed algorithms; Theory of
computation æ Cryptographic primitives; Mathematics of computing æ Probabilistic algorithms

Keywords and phrases shared coin, Byzantine Agreement, VRF, sub-quadratic consensus protocol

1 Introduction

Byzantine Agreement (BA) [27] has been studied for four decades by now, but until recently,
has been considered at a fairly small scale. In recent years, however, we begin to see practical
use-cases of BA in large-scale systems, which motivates a push for reduced communication
complexity. In deterministic algorithms, Dolev and Reischuk’s renown lower bound stipulates
that �(n2) communication is needed [17], and until fairly recently, almost all randomized
solutions have also had (expected) quadratic word complexity. Recent work has broken this
barrier [22, 20, 31], but not in asynchronous settings. We present here the first sub-quadratic
asynchronous Byzantine Agreement algorithm. Our algorithm is randomized and solves
binary BA with high probability (whp), i.e., with probability that tends to 1 as n goes to
infinity.

We consider a system with a static set of n processes, in the so-called “permissioned”
setting, where the ids of all processes are well-known. Our algorithm tolerates f failures for
n ¥ 4.5f (asymptotically). In addition, we assume a trusted public key infrastructure (PKI)
that allows us to use verifiable random functions (VRFs) [29].

We assume a strong adversary that can adaptively take over processes, whereupon it has
full access to their private data. It further sees all messages in the system. But we do limit
the adversary in two ways. First, we assume that it is computationally bounded so that we
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2 Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

may use the PKI. Second, as proven in [1] for the synchronous model, achieving sub-quadratic
complexity is impossible when the adversary can perform after-the-fact removal, meaning
that it can delete messages that were sent by correct processes before corrupting these
processes. Here, we adapt the no after-the-fact removal assumption to the asynchronous
model, and define a delayed-adaptive adversary based on causality [26].

We formalize the concept of VRF-based committee sampling as used in Algorand [20, 15],
and adapt it to the asynchronous model. In a nutshell, the idea is to use a VRF seeded with
each process’s private key in order to sample uniformly at random O(log n) processes for
a committee, and to have di�erent committees execute di�erent parts of the BA protocol.
Each committee is used for sending exactly one protocol message and messages are sent
only by committee members, thus reducing the communication cost. Whereas in Algorand’s
synchronous model a process can be sure it receives messages from all correct committee
members by a timeout, in the asynchronous model this is not the case. Rather, processes
make progress by waiting for some threshold number of messages. Without committees, this
threshold is normally n≠f (waiting for more than n≠f processes might violate termination).
But since committees are randomly sampled, we do not know the committee’s exact size
or the number of Byzantine processes in it. Thus, adapting committees to this model is
somewhat subtle and requires ensuring certain conditions regarding the intersection of subsets
of committees. In this paper we identify su�cient conditions on sampling, which ensure
safety and liveness with high probability.

Randomized BA algorithms can be seen as if processes toss a random coin at some point
during the protocol. While some protocols toss a local coin [9, 12] and require exponential
expected time to reach agreement, others use the abstraction of a shared coin, which involves
communication among processes and results in the same coin toss with some well defined
success rate [33, 14, 13, 20, 23]. In this work we present an asynchronous shared coin
algorithm that uses a VRF and provides a constant success rate with an equal probability for
tossing 0 and 1. Unlike previous shared coin implementations, our solution does not require
a priori knowledge of the set of participants, which makes it useful in committee-based
constructions. We then adapt our coin to work with committees and use it to devise a
sub-quadratic BA algorithm.

In summary, this paper presents the first formalization of randomly sampled committees
using cryptography in asynchronous settings. Based on this technique, it presents the first
sub-quadratic asynchronous shared coin and BA whp algorithms. Our algorithms have
expected ÂO(n) word complexity and O(1) expected time.

Roadmap. The rest of this paper is organized as follows. Section 2 describes the model;
Section 3 reviews related work. In Section 4, we present our shared coin algorithm and
in Section 5, we formalize committee sampling. Then, in Section 6, we use the coin and
the committee sampling to construct a BA whp algorithm. We end with some concluding
remarks in Section 7.

2 Model and Preliminaries

We consider a distributed system consisting of a well-known static set � of n processes and
a delayed-adaptive adversary (see definition below). The adversary may adaptively corrupt
up to f = ( 1

3 ≠ ‘)n processes in the course of a run, where max{ 3
8 ln n , 0.109} + 1

8 ln n < ‘ <
1
3 .

A corrupted process is Byzantine; it may deviate arbitrarily from the protocol. In particular,
it may crash, fail to send or receive messages, and send arbitrary messages. As long as a
process is not corrupted by the adversary, it is correct and follows the protocol.
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Delayed-adaptive adversary. In the synchronous model, one defines a late adver-
sary [34, 24, 7, 4], which at the beginning of round r, can observe the state of the system at
the beginning of round r ≠ 1. This assumption prevents “after-the-fact” removals of messages
sent by processes before being taken over by the adversary [1, 20], as required for achieving
a sub-quadratic communication cost. We adapt this assumption to the asynchronous model.
Since in asynchronous models the natural order between messages is Lamport’s happens-
before relation [26], we use the notion of causality instead of ‘rounds’ to define what messages
the adversary may observe when scheduling other messages. We denote by m æ m

Õ the fact
that m causally precedes m

Õ. The adversary is formally defined as follows:

I Definition 1 (delayed-adaptive adversary). The delayed-adaptive adversary may adaptively

corrupt up to f processes over the course of a run and schedules all messages. The adversary

has full access to corrupted processes’ private information and can observe all communication,

but it can use the contents of a message m sent by a correct process for scheduling a message

m
Õ

only if m æ m
Õ
.

In addition, we assume that once the adversary takes over a process, it cannot “front
run” messages that that process had already sent when it was correct, causing the correct
messages to be supplanted. Blum et al. [10] achieve this property by using a separate key to
encrypt each message, and deleting the secret key immediately thereafter.

Cryptographic tools. We assume a trusted PKI, where private and public keys for the
processes are generated before the protocol begins and processes cannot manipulate their
public keys. In addition, we assume that the adversary is computationally bounded, meaning
that it cannot obtain the private keys of processes unless it corrupts them. Furthermore, we
assume that the PKI is in place from the outset. (Recall that we assume a permissioned
setting, so the public keys of the n processes are well-known). These assumptions allow us
to use verifiable random functions, as we now define.

A verifiable random function (VRF) is a pseudorandom function that provides a proof of
its correct computation [29]. Given a secret key sk, one can evaluate the VRF on any input
x and obtain a pseudorandom output y together with a proof fi, i.e., Èy, fiÍ = VRFsk(x).
From fi and the corresponding public key pk, one can verify that y is correctly computed
from x and sk using the function VRF-Verpk(x, Èy, fiÍ). Additionally, a VRF needs to satisfy
uniqueness. More formally, a VRF guarantees the following properties:

Pseudorandomness: for any x, it is infeasible to distinguish y = VRFsk(x) from a
uniformly random value without access to sk.
Verifiability: VRF-Verpk(x, VRFsk(x)) = true.
Uniqueness: it is infeasible to find x, y1, y2, fi1, fi2 such that y1 ”= y2 but VRF-Verpk(x,-
Èy1, fi1Í) = VRF-Verpk(x, Èy2, fi2Í) = true.

E�cient constructions for VRFs have been described in the literature [16, 19].
Communication. We assume that every pair of processes is connected via a reliable

link. Messages are authenticated in the sense that if a correct process pi receives a message
m indicating that m was sent by a correct process pj , then m was indeed generated by pj

and sent to pi. The network is asynchronous, i.e., there is no bound on message delays.
Complexity. We use the following standard complexity notions [3, 30]. While measuring

complexity, we allow a word to contain a signature, a VRF output, or a value from a finite
domain. We define the duration of an execution as the longest sequence of messages that are
causally related in this execution until all correct processes decide. We measure the expected
word communication complexity of our protocols as the maximum of the expected total
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number of words sent by correct processes and the expected running time of our protocol as
the maximum of the expected duration. In both cases the maximum is computed over all
inputs and applicable adversaries and expectation is taken over the random VRF outputs.

3 Related Work

Lower bounds. Our assumptions conform with a number of known bounds. Deterministic
consensus is impossible in an asynchronous system if even one process may crash (by FLP [18])
and requires �(n2) communication even in synchronous systems [17]. As for randomized
Byzantine Agreement, Abraham et al. [1] state that disallowing after-the-fact removal is
necessary even in synchronous settings for achieving sub-quadratic communication.

Asynchronous BA and shared coin algorithms. The algorithms we present in this
paper belong to the family of asynchronous BA algorithms, which sacrifice determinism in
order to circumvent FLP. We compare our solutions to existing ones in Table 1.

Ben-Or [9] suggested a protocol with resilience n > 5f . This protocol uses a local coin
(namely, a local source of randomness) and its expected time complexity is exponential
(or constant if f = O(

Ô
n)). Bracha [11] improved the resilience to n > 3f with the same

complexity. The complexity can be greatly reduced by replacing the local coin with a shared
one with a guaranteed success rate.

Later works presented the shared coin abstraction and used it to solve BA with O(n2)
communication. Rabin [33] was the first to do so, suggesting a protocol with resilience
n > 10f and a constant expected number of rounds. Cachin et al. [13] were the first to use
a shared coin to solve BA with O(n2) communication and optimal resilience. Mostefaoui
et al. [30] then presented a signature-free BA algorithm with optimal resilience and O(n2)
messages that uses a shared coin abstraction as a black box; the shared coin algorithm we
provide in Section 4 can be used to instantiate this protocol. All of the aforementioned
algorithms solve binary BA, where the processes’ initial values are 0 and 1; a recent work
solved multi-valued BA with the same O(n2) word complexity [3].

BA algorithms also di�er in the cryptographic assumptions they make and the cryp-
tographic tools they use. Rabin’s coin [33] is based on cryptographic secret sharing [35].
Some later works followed suit, and used cryptographic abstractions such as threshold
signatures [3, 13]. Other works forgo cryptography altogether and instead consider a
full information model, where there are no restrictions on the adversary’s computational
power [14, 23]. In this model, the problem is harder, and existing works achieve very low
resilience [23] (n > 400f) or high communication complexity [14]. In this paper we do use
cryptographic primitives. We assume a computationally bounded adversary and rely on the
abstraction of a VRF [29]. VRFs were previously used in blockchain protocols [20, 21, 5] and
were also used by Micali [28] to construct a shared coin in the synchronous model.

Several works [2, 8, 25, 32, 36] solve BA with subquadratic complexity in the so-called
optimistic case (or “happy path”), when communication is timely and a correct process is
chosen as a “leader”. In contrast, we focus on the worst-case asynchronous case.

Committees. We use committees in order to reduce the word complexity and allow
each step of the protocol to be executed by only a fraction of the processes. King and Saia
used a similar concept and presented the first sub-quadratic BA protocol in the synchronous
model [22]. Algorand proposed a synchronous algorithm [20] (and later extended it to
eventual synchrony [15]) where committees are sampled randomly using a VRF. Each process
executes a local computation to sample itself to a committee, and hence the selection of
processes does not require interaction among them. We follow this approach in this paper
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Table 1 Asynchronous Byzantine Agreement algorithms.

Protocol n > Adversary Word complexity Termination Safety

Ben-Or [9] 5f adaptive O(2n) w.p. 1 X
Rabin [33] 10f adaptive O(n2) w.p. 1 X
Bracha [11] 3f adaptive O(2n) w.p. 1 X
Cachin et al. [13] 3f adaptive O(n2) w.p. 1 X
King-Saia [23] 400f adaptive polynomial whp X
MMR [30] 3f adaptive O(n2) w.p. 1 X
Our protocol ¥ 4.5f delayed-adaptive Õ(n) whp whp

and adapt the technique to the asynchronous model.
Following initial publication of our work, Blum et al. [10] have also achieved subquadratic

BA WHP under an adaptive adversary. Their assumptions are incomparable to ours – while
they strengthen the adversary to remove the delayed adaptivity requirement, they also
strengthen the trusted setup. Specifically, they use a trusted dealer to a priori determine
the committee members, flip the shared coin, and share it among the committee members.
In contrast, we use a peer-to-peer protocol to generate randomness, and require delayed
adaptivity in order to prevent the adversary from tampering with this randomness. As in
our protocol, setup has to occur once and may be used for any number of BA instances.

4 Shared Coin

We describe here an asynchronous protocol for a shared coin with a constant success rate
against the delayed-adaptive adversary. We assume that for every r œ N, shared_coin(r) is
invoked by all correct processes and that the invocation of shared_coin(r) by some process p

is causally independent of its progress at other processes. The definition of a shared coin is
given below.

I Definition 2 (Shared Coin). A shared coin with success rate fl is a shared object that generates

an infinite sequence of binary outputs. For each execution of the procedure shared_coin(r)
with r œ N, all correct processes output b with probability at least fl, for any value b œ {0, 1}.

The pseudo-code for our shared coin is presented in Algorithm 1. Our protocol is composed
of two phases of messages passing. Each process first samples the VRF with its private key
and the protocol’s argument in order to generate a random initial value. For brevity, we
denote by V RFi the VRF with pi’s private key. Using a VRF to generate a random initial
value e�ectively weakens the adversary as Byzantine processes can neither choose their initial
values nor equivocate. If a Byzantine process would try to act maliciously, the VRF proof
would easily expose it and its message would be ignored.

In each phase of the protocol, each process sends one value to every other process. The
receiver validates the received values using the VRF proofs, which are sent along with
the values. We omit the proof validation from the code for clarity. After two phases of
communication, each process chooses the minimum value it received in the second phase and
outputs its least significant bit. We follow the concept of a common core, as presented by
Attiya and Welch for the crash failure model [6], and argue that if a core of f + 1 correct
processes hold the global minimum value at the end of phase 1, then by the end of the
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following phase all processes receive this value. We exploit the ‘ parameter in our resilience
definition to bound the number of values held by f + 1 correct processes. We show that
this number is linear in n and hence with a constant positive probability, by the end of the
second phase, all correct processes receive the global minimum among the VRF outputs and
therefore produce the same output.

Algorithm 1 Protocol shared_coin(r): code for process pi

1: Initially first-set, second-set = ÿ
2: vi Ω VRFi(r)
3: send Èfirst, viÍ to all processes

4: upon receiving Èfirst, vjÍ with valid vj from pj do
5: if vj < vi then vi Ω vj

6: first-set Ω first-set fi {j}
7: when |first-set| = n ≠ f for the first time
8: send Èsecond, viÍ to all processes

9: upon receiving Èsecond, vjÍ with valid vj from pj do
10: if vj < vi then vi Ω vj

11: second-set Ω second-set fi {j}
12: when |second-set| = n ≠ f for the first time
13: return LSB(vi)

We now prove that the shared coin has a constant success rate. We say that a value v is
common if at least f + 1 correct processes receive v by the end of phase 1. Denote by c be
the number of di�erent common values. The next two lemmas give a lower bound on c and
on the probability that the global minimum among the VRF outputs is common.

I Lemma 3. In Algorithm 1, c Ø 9‘
1+6‘ n.

Proof. In a given run of the algorithm, define a table T with n rows and n columns, where
for each correct process pi and each 0 Æ j Æ n ≠ 1, T [i, j] = 1 i� pi receives Èfirst, vÍ from
pj before sending the second message in line 8. Each row of a correct process contains exactly
n ≠ f ones since it waits for n ≠ f Èfirst, vÍ messages (line 7). Each row of a faulty process
is arbitrarily filled with n ≠ f ones and f zeros. Thus, the total number of ones in the table
is n(n ≠ f) and the total number of zeros is nf . Let k be the number of columns with at
least 2f + 1 ones. Because each column represents a value and out of the 2f + 1 ones at least
f + 1 represent correct processes that receive this value, c Ø k. Denote by x the number of
ones in the remaining columns. Because each column has at most n ones we get:

x Ø n(n ≠ f) ≠ kn. (1)

And because the remaining columns have at most 2f ones:

x Æ 2f(n ≠ k). (2)

Combining (1), (2) we get:

2f(n ≠ k) Ø n(n ≠ f) ≠ kn

2fn ≠ 2fk Ø n
2 ≠ fn ≠ kn

Rd
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(n ≠ 2f)k Ø n
2 ≠ 3fn

k Ø n(n ≠ 3f)
n ≠ 2f

.

Because f = ( 1
3 ≠ ‘)n we get:

c Ø k Ø
n(n ≠ 3( 1

3 ≠ ‘)n)
n ≠ 2( 1

3 ≠ ‘)n
= n(1 ≠ 1 + 3‘)

1 ≠ 2
3 + 2‘

= 9‘

1 + 6‘
n, as required.

J

Let vmin , min
piœ�

{V RFi(r)}. We prove that with a constant probability, it is common.

I Lemma 4. Prob[vmin is common] Ø c
n ≠ 1

3 + ‘.

Proof. Notice that we assume that the invocation of shared_coin(r) by each process is
causally independent of its progress at other processes. Hence, for any two processes pi, pj ,
the messages Èfirst, viÍ, Èfirst, vjÍ are causally concurrent. Thus, due to our delayed-

adaptive adversary definition, these messages are scheduled by the adversary regardless of
their content, namely their VRF random values. Notice that the adversary can corrupt
processes before they initially send their VRF values. Since the adversary cannot predict the
VRF outputs of the processes, the probability that the process holding vmin is corrupted before
sending its first messages is at most f

n . The adversary is oblivious to the correct processes’
VRF values when it schedules their first phase messages. Therefore, each of them has the
same probability to become common. Since at most f common values originate at Byzantine
processes, this probability is at least c≠f

n≠f . We conclude that vmin is common with probability
at least (1 ≠ f

n ) c≠f
n≠f = (1 ≠ ( 1

3 ≠‘)n
n ) c≠( 1

3 ≠‘)n

n≠( 1
3 ≠‘)n

= ( 2
3 + ‘) c≠( 1

3 ≠‘)n

( 2
3 +‘)n

= c≠( 1
3 ≠‘)n
n = c

n ≠ 1
3 + ‘.

J

We next observe that if vmin is common, then it is shared by all processes.

I Lemma 5. If vmin is common then each correct process holds vmin at the end of phase 2.

Proof. Since vmin is common, at least f + 1 correct processes receive it by the end of phase
1 and update their local values to vmin. During the second phase, each correct process hears
from n ≠ f processes. This means that it hears from at least one correct process that has
updated its value to vmin and sent it. J

I Lemma 6. The coin’s success rate is at least
18‘2+24‘≠1

6(1+6‘) .

Proof. We bound the probability that all correct processes output b œ {0, 1} as follows:
Prob[all correct processes output b ] Ø Prob[all correct processes have the same vi at the

end of phase 2 and its LSB is b] Ø Prob[all correct processes have vi = vmin at the end of
phase 2 and its LSB is b] = 1

2 · Prob[all correct processes have vi = vmin at the end of phase

2]
Lemma 5

Ø 1
2 · Prob[vmin is common]

Lemma 4
Ø 1

2 ( c
n ≠ 1

3 + ‘)
Lemma 3

Ø 18‘2+24‘≠1
6(1+6‘) .

J

I Remark 7. Notice that for ‘ = 1
3 (i.e., f = 0) it holds that the coin’s success rate is 1

2 and
we get a perfect fair coin.

We have shown a bound on the coin’s success rate in terms of ‘. Since ‘ > 0.109, the
coin’s success rate is a positive constant. We next prove that the coin ensures liveness.

R3
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I Lemma 8. If all correct processes invoke Algorithm 1 then all correct processes return.

Proof. All correct processes send their messages in the first phase. As up to f processes
may be faulty, each correct process eventually receives n ≠ f Èfirst, xÍ messages and sends
a message in the second phase. As n ≠ f correct processes send their messages, each correct
process eventually receives n ≠ f Èsecond, xÍ messages and returns. J

From Lemma 6 and Lemma 8 we conclude:

I Theorem 9. Algorithm 1 implements a shared coin with success rate at least
18‘2+24‘≠1

6(1+6‘) .

Complexity. In each shared coin instance all correct processes send two messages to all
other processes. Each of these messages contains one VRF output (including a value and a
proof), in addition to a constant number of bits that identify the message’s type. Therefore,
each message’s size is a constant number of words and the total word complexity of a shared
coin instance is O(n2).

We have presented a new shared coin in the asynchronous model that uses a VRF. This
coin can be incorporated into the Byzantine Agreement algorithm of Mostefaoui et al. [30],
to yield an asynchronous binary Byzantine Agreement with resilience f = ( 1

3 ≠ ‘)n, a word
complexity of O(n2), and O(1) expected time.

5 Committees

5.1 Validated committee sampling
With the aim of reducing the number of messages and achieving sub-quadratic word com-
plexity, it is common to avoid all-to-all communication phases [20, 22]. Instead, a subset
of processes is sampled to a committee and only processes elected to the committee send
messages. As committees are randomly sampled, preventing the adversary from corrupting
their members, each committee member cannot predict the next committee sample and send
its message to all other processes. Potentially, if the committee is su�ciently small, this
technique allow committee-based protocols to result in sub-quadratic word complexity.

Using VRFs, it is possible to implement validated committee sampling, which is a primitive
that allows processes to elect committees without communication and later prove their election.
It provides every process pi with a private function samplei(s, ⁄), which gets a string s and
a threshold 1 Æ ⁄ Æ n and returns a tuple Èvi, ‡iÍ, where vi œ {true, false} and ‡i is a proof
that vi = samplei(s, ⁄). If vi = true we say that pi is sampled to the committee for s and
⁄. The primitive ensures that pi is sampled with probability ⁄

n . In addition, there is a
public (known to all) function, committee-val(s, ⁄, i, ‡i), which gets a string s, a threshold ⁄,
a process identification i and a proof ‡i, and returns true or false.

Consider a string s. For every i, 1 Æ i Æ n, let Èvi, ‡iÍ be the return value of samplei(s, ⁄).
The following is satisfied for every pi:

committee-val(s, ⁄, i, ‡i) = vi.
If pi is correct, then it is infeasible for the adversary to compute samplei(s, ⁄).
It is infeasible for the adversary to find Èv, ‡Í s.t. v ”= vi and committee-val(s, ⁄, i, ‡) =
true.

We refer to the set of processes sampled to the committee for s and ⁄ as C(s, ⁄). In this
paper we set ⁄ to 8 ln n. Let d be a parameter of the system such that max{ 1

⁄ , 0.0362} < d <

‘
3 ≠ 1

3⁄ . Our committee-based protocols can no longer wait for n ≠ f processes. Instead, they

RN
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wait for W ,
'
( 2

3 + 3d)⁄
(

processes. We show that whp at least W processes will be correct
in each committee sample and hence waiting for this number does not compromise liveness. In
addition, instead of assuming f Byzantine processes, our committee-based protocols assume
that whp the number of Byzantine processes in each committee is at most B ,

%
( 1

3 ≠ d)⁄
&
.

The following claim is proven in Appendix A using Cherno� bounds.

B Claim 10. For a string s and ⁄ = const · ln n the following hold with high probability:

(S1) |C(s, ⁄)| Æ (1 + d)⁄.
(S2) |C(s, ⁄)| Ø (1 ≠ d)⁄.
(S3) At least W processes in C(s, ⁄) are correct.
(S4) At most B processes in C(s, ⁄) are Byzantine.

If a protocol uses a constant number of committees, then with high probability, Claim 10
holds for all of them. If, however, a protocol uses a polynomial number of committees then
it does not guarantee the properties of this claim. The following corollaries are derived from
Claim 10 and are used to ensure the safety and liveness properties of our protocols that use
committees (a full proof is in Appendix A). Intuitively, S3 allows the protocol to wait for W

messages without forgoing liveness. Property S5 below shows that if two processes wait for
sets P1 and P2 of this size, then they hear from at least B + 1 common processes of which,
by S4, at least one is correct.

I Corollary 11 (S5). Consider C(s, ⁄) for some string s and some ⁄ = const · ln n and two

sets P1, P2 µ C(s, ⁄) s.t |P1| = |P2| = W . Then, |P1 fl P2| Ø B + 1.

The following property is used to show that if B + 1 correct processes hold some value,
and some correct process waits for messages from W processes, then it hears from at least
one correct process that holds this value.

I Corollary 12 (S6). Consider C(s, ⁄) for some string s and some ⁄ = const · ln n and two

sets P1, P2 µ C(s, ⁄) s.t |P1| = B + 1 and |P2| = W . Then, |P1 fl P2| Ø 1.

5.2 WHP Coin
We now employ committee sampling to reduce the word complexity of our shared coin. Our
new protocol is called whp_coin. As before, we assume that for every r œ N, the invocation
of whp_coin(r) by some process p is causally independent of its progress at other processes.
We now define the WHP coin abstraction:

I Definition 13 (WHP Coin). A WHP coin with success rate fl is a shared object exposing

whp_coin(r), r œ N at each process. If all correct processes invoke whp_coin(r) then, whp

(1) all correct processes return, and (2) all of them output the same value b with probability

at least fl, for any value b œ {0, 1}.

The whp_coin protocol is presented in Algorithm 2. It samples two committees, one for
each communication step. In each step, only the processes that are sampled to the committee
send messages. However, since the committee samples are unpredictable, messages are sent
to all processes. With committees, processes can no longer wait for n ≠ f messages. Instead
they wait for W messages. Since a constant number of committees is sampled in the protocol,
Claim 10 holds for all of them and by S3, all processes receive W messages, ensuring liveness.

In Appendix B we adapt the coin’s correctness proof given in Section 4 to the committee-
based protocol, proving the following theorem:

ky



10 Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

Algorithm 2 Protocol whp_coin(r): code for process pi

1: Initially first-set, second-set = ÿ, vi = Œ
2: if samplei(first, ⁄) = true then
3: vi Ω VRFi(r)
4: send Èfirst, viÍ to all processes

5: upon receiving Èfirst, vjÍ with valid vj

from validly sampled pj do
6: if samplei(second, ⁄) then
7: if vj < vi then vi Ω vj

8: first-set Ω first-set fi{j}
9: when |first-set| = W for the first time

10: send Èsecond, vi)Í to all processes

11: upon receiving Èsecond, vjÍ with valid vj

from validly sampled pj do
12: if vj < vi then vi Ω vj

13: second-set Ω second-set fi{j}
14: when |second-set| = W for the first time
15: return LSB(vi)

I Theorem 14. Algorithm 2 implements a WHP coin with a constant success rate.

Complexity. In each whp_coin instance using committees all correct processes that
are sampled to the two committees (lines 2,6) send messages to all other processes. Each of
these messages contains a VRF output (including a value and a proof), a VRF proof of the
sender’s election to the committe and a constant number of bits that identify the type of
message that is sent. Therefore, each message’s size is a constant number of words and the
total word complexity of a WHP coin instance is O(nC) where C is the number of processes
that are sampled to the committees. Since each process is sampled to a committee with
probability 1

⁄ , we get a word complexity of O(n⁄) = O(n log n) = ÂO(n) in expectation.

6 Asynchronous sub-quadratic Byzantine Agreement

We adapt the Byzantine Agreement algorithm of Mostefaoui et al. [30] to work with commit-
tees. Our protocol leverages an approver abstraction, which we implement in Section 6.1
and then integrate it into a Byzantine Agreement protocol in Section 6.2.

6.1 Approver abstraction
The approver abstraction is an adaptation of the Synchronized Binary-Value Broadcast
(SBV-broadcast) primitive in [30]. It provides processes with the procedure approve(v), which
takes a value v as an input and returns a set of values.

I Assumption 1. Correct processes invoke the approver with at most 2 di�erent values.

Under this assumption, an approver satisfies the following:

I Definition 15 (Approver). In an approver instance the following properties hold whp:

kR
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Validity. If all correct processes invoke approve(v) then the only possible return value of

correct processes is {v}.

Graded Agreement. If a correct process pi returns {v} and another correct process pj

returns {w} then v = w.

Termination. If all correct processes invoke approve then approve returns with a non-empty

set at all of them.

Our approver uses di�erent committees for di�erent message types, as illustrated in Fig. 1.
Importantly, the protocol satisfies the so-called process replaceability [20] property, whereby
a correct process selected for a committee C broadcasts at most one message in its role as a
member of C. Thus, our delayed-adaptive adversary can learn of a process’s membership in
a committee only after that process ceases to partake in the committee. This allows us to
leverage the sampling analysis in the previous section. For clarity of the presentation, we
discuss the algorithm here under the assumption that properties S1-S6 hold for all sampled
committees. As shown above, these hold whp for each committee, and the algorithm employs
a constant number of committees, so they hold for all of them whp.

Figure 1 Committees sampled in Algorithm 3.

The approver’s pseudo-code appears in Algorithm 3. It consists of three phases – init,
echo, and ok. In each phase, committee members broadcast to all processes. Messages are
validated to originate from legitimate committee members using the committee-val primitive;
this validation is omitted from the pseudo-code for clarity. In the first phase, each init
committee member broadcasts its input value to all processes.

The role of the echo phase is to “boost” values sent by su�ciently many processes in the
init phase, and make sure that all correct processes receive them. “Su�ciently many” here
means at least B + 1, which by S4 includes at least one correct process. Ensuring process
replaceability in the echo phase is a bit tricky, since committee members must echo every
value they receive from least B + 1 processes, and there might be two such values. (Recall
that we assume that correct processes invoke the protocol with at most two di�erent values,
so there cannot be more than two values that exceed this threshold). To ensure that each
committee member broadcasts at most once, we sample a di�erent committee for each value.
That is, the value v is part of the string passed to the sample function for this phase.

When a member of the ok committee receives Èecho, vÍ messages from W di�erent
members of the same echo committee for the first time, it broadcasts an Èok, vÍ message.
Note that the process sends an ok message only for the first value that exceeds this threshold.
An Èok, vÍ message includes, as proof of its validity, W signed Èecho, vÍ messages. Again,
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the proof and its validation are omitted from the pseudo-code for clarity. Once a correct
process receives W valid ok messages, it returns the set of values in these messages.

Algorithm 3 Protocol approve(vi): code for process pi

1: if samplei(init, ⁄) = true then broadcast Èinit, viÍ

2: upon receiving Èinit, vÍ from B + 1 di�erent processes do
3: if samplei(Èecho, vÍ, ⁄) = true then broadcast Èecho, vÍ

4: upon receiving Èecho, vÍ from W di�erent processes do
5: if samplei(ok, ⁄) = true · haven’t sent any Èok, úÍ message then
6: broadcast Èok, vÍ

7: upon receiving Èok, úÍ from W di�erent processes do
8: return the set of values received in these messages

We next prove that Algorithm 3 implements an approver.

I Lemma 16 (Validity). If all correct processes invoke approve(v) then the only possible

return value of correct processes is {v} whp.

Proof. By Claim 10 S4 holds whp for the four sampled committees. It remains to show
that S4 implies validity. Since by S4 the number of Byzantine processes sampled to the init
committee in line 1 is at most B, no process receives B + 1 messages with a value w ”= v.
Thus, no correct process echoes Èecho, wÍ in line 3. Because the number of Byzantine
processes in C(Èecho, wÍ, ⁄) in line 3 is also at most B, no correct process receives more than
B Èecho, wÍ messages. As a result, since B < W , no Èok, wÍ message is sent by any correct
process. Since ok messages carry proofs, no Byzantine process can send a valid Èok, wÍ either.
Therefore, the only possible value in the ok messages is v, and no other value is returned. J

I Lemma 17 (Graded Agreement). If a correct process pi returns {v} and another correct

process pj returns {w} then v = w whp.

Proof. By Claim 10 and Corollary 11, S4 and S5 hold whp for the four sampled committees.
We show that S4 and S5 imply graded agreement. Assume pi returns {v} and pj returns
{w}. Then pi receives W Èok, vÍ messages and pj receives W Èok, wÍ messages. By S5, two
sets of size W intersect by at least ( 1

3 ≠ d)⁄ + 1 processes. Hence, since by S4 there are at
most B Byzantine processes in the ok committee, there is at least one correct process pk

whose ok message is received by both pi and pj whp. It follows that pk sends Èok, vÍ and
Èok, wÍ. Since every correct process sends at most one ok message (line 5), v = w. J

I Lemma 18 (Termination). If all correct processes invoke approve then at every correct

process approve returns with a non-empty set whp.

Proof. By Claim 10 S3 holds whp. We show that S3 implies termination. Because all correct
processes invoke approve, every correct init committee member in line 1 sends Èinit, viÍ.
Notice that 1

2 W > ( 1
3 ≠ d)⁄ Ø B. Hence, since the number of correct processes in the init

committee is at least W (S3) and correct processes may send at most two di�erent initial
values (Assumption 1), one of them is sent by at least B + 1 correct processes. Denote this
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value by v. Every correct process receives this value from B +1 processes, and if it is sampled
to C(Èecho, vÍ, ⁄) in line 3 then it sends it to all other processes. Since C(Èecho, vÍ, ⁄) also
has at least W correct processes (S3), every correct process p receives W Èecho, vÍ messages.
If p is sampled to the ok committee in line 5 and at this point p has not yet sent an Èok, úÍ
message, it sends one. Since there are at least W correct processes that are sampled to the ok
committee (S3) and they all send ok messages (possibly for di�erent values), every correct
process receives W ok messages and returns the non-empty set of approved values. J

From Lemmas 16,17,18, we conclude the following theorem:

I Theorem 19. Algorithm 3 implements an approver.

Complexity. In each approver instance correct processes that are sampled to the
four committees (lines 1,3,5) send messages to all other processes. The committee size is
O(⁄) = O(log n) whp. Messages contain values, VRF proofs of the sender’s election to the
committee, signatures of O(⁄) committee members, and a constant number of bits that
identify the type of message that is sent. Therefore, each message’s size is at most O(⁄) words
and the total word complexity of a shared coin instance is O(n⁄

2) = O(n log2
n) = ÂO(n) in

expectation. The ⁄
2 appears in the expression due to the signatures of O(⁄) processes sent

along the ok messages.

6.2 Byzantine Agreement WHP
Our next step is solving Byzantine Agreement whp, formally defined as follows:

I Definition 20 (Byzantine Agreement WHP). In Byzantine Agreement WHP, each correct

process pi œ � proposes a binary input value vi and decide on an output value decisioni s.t.

with high probability the following properties hold:

Validity. If all correct processes propose the same value v, then any correct process that

decides, decides v.

Agreement. No two correct processes decide di�erently.

Termination. Every correct process eventually decides.

We present the pseudo-code for our algorithm in Algorithm 4. Our protocol executes in
rounds. Each round consists of two approver invocations and one call to the WHP coin. Again,
we discuss the algorithm assuming S1-S6 hold. We will argue that the algorithm decides in
a constant number of rounds whp, and so these properties hold for all the committees it
uses. The local variable esti holds pi’s current estimate of the decision value. The variable
decisioni holds pi’s irrevocable decision. It is initialized to ‹ and set to a value in {0, 1} at
most once. Every process pi begins by setting esti to hold its initial value. At the beginning
of each round processes execute the approver with their est values. If they return a singleton
{v}, they choose to invoke the next approver with v as their proposal and otherwise they
invoke the next approver with ‹. By the approver’s graded agreement property, di�erent
processes do not return di�erent singletons. Thus, at most two di�erent values (‹ and one in
{0, 1}) are given as an input by correct processes to the next approver, satisfying Assumption
1.

At this point, after all correct processes have chosen their proposals, they all invoke the
WHP coin in line 8 in order to select a fall-back value. Notice that executing the WHP coin
protocol after proposals have been set prevents the adversary from biasing proposals based
on the coin flip. Then, in in line 9, all processes invoke the approver with their proposals. If
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a process does not receive ‹ in its return set, it can safely decide the value it received. It
does so by updating its decision variable in line 13. If it receives some value other than ‹ it
adopts it to be its estimated value (line 18), whereas if it receives only ‹, it adopts the coin
flip (line 16). If all processes receive ‹ in line 4 then the probability that they all adopt the
same value is at least 2fl, where fl is the coin’s success rate. If some processes receive v, then
the probability that all the processes that adopt the coin flip adopt v is at least fl. With high
probability, after a constant number of rounds, all correct processes have the same estimated
value. By validity of the approver, once they all have common estimate, they decide upon it
within 1 round.

Algorithm 4 Protocol Byzantine Agreement(vi): code for process pi

1: esti Ω vi

2: decisioni Ω ‹

3: for r = 0, 1, ... do
4: vals Ω approve(esti)
5: if vals = {v} for some v then
6: proposei Ω v

7: otherwise proposei Ω ‹

8: c Ω whp_coin(r)

9: props Ω approve(proposei)
10: if props = {v} for some v ”= ‹ then
11: esti Ω v

12: if decisioni = ‹ then
13: decisioni Ω v

14: else
15: if props = {‹} then
16: esti Ω c

17: else Û props = {v, ‹}
18: esti Ω v

We now prove our main theorem:

I Theorem 21. Algorithm 4 when using an approver (Definition 15) and a WHP coin

(Definition 13) solves Byzantine Agreement whp (Definition 20).

We first show that Algorithm 4 satisfies the approver and WHP coin primitives’ as-
sumptions whp. Proving this allows us to use their properties while proving Theorem
21.

I Lemma 22. For every round r of Algorithm 4 the following hold:

1. All correct processes invoke approve with at most 2 di�erent values.

2. The invocation of whp_coin(r) by a correct process p is causally independent of its progress

at other processes.

Proof. 1. It is easy to see, by induction on the number of rounds, that since the processes’
inputs are binary and we use a binary coin, the est of all processes is in {0, 1} at the
beginning of each round. Hence, the approver in line 4 is invoked with at most two
di�erent values. Due to its graded agreement property, all processes that update their
propose to v ”= ‹ in line 6 update it to the same value whp. Thus, whp, in line 9 approver
is invoked with either v or ‹.

2. Correct processes call whp_coin(r) without waiting for indication that other processes
have done so.

J

Next, we show that for any given round of the algorithm, (1) whp all processes complete
this round, and (2) with a constant probability, they all have the same estimate value by its
end.

k8



S. Cohen, I. Keidar and A. Spiegelman 15

I Lemma 23. If all correct processes begin round r of Algorithm 4 then whp:

1. All correct processes complete round r, i.e. they’re not blocked during round r.

2. With probability greater than fl, where fl is the success rate of the WHP coin, all correct

processes have the same est value at the end of round r.

Proof. First, if all correct processes begin round r then they all invoke the approver in line
4. Their invocation returns whp so they all invoke the coin in line 8, and so it returns and
all invoke approve in line 9, and so it also returns, proving (1). To show (2), consider the
possible scenarios with respect to the approver’s return value:

All correct processes return singletons in line 4:
By the approver’s graded agreement, whp they return {v} with the same value v. Hence,
all correct processes update their propose to v. Then, they all execute approve(v) in line
9, and by validity, they all return {v} whp. In this case they all update est Ω v.
All correct processes return {0, 1} in line 4:
All correct processes update their propose value to ‹. Then, they all execute approve(‹)
in line 9, and by validity, they return {‹} whp. In this case, all correct processes then
update their estimate value to the coin flip (line 16). With probability at least 2fl all
correct processes toss the same v œ {0, 1}.
Some, but not all correct processes return singletons in line 4:
By graded agreement, all singletons hold the same value v. Thus, all correct processes
propose v or ‹ and by validity return {v}, {v, ‹}, or {‹} in line 9. We examine two
possible complementary sub-cases:

If some correct process returns {v} in line 9: By approver’s graded agreement, no
correct process returns {‹} in line 9, whp. Thus, whp, all correct processes update
their estimate value to v (in line 11 or 18).
If no correct process return {v} in line 9: All correct processes returns {v, ‹} or {‹}
in line 9. All correct processes either update their estimate value to the coin flip of the
WHP coin (line 16) or to v (line 18). Since the value v is determined before tossing
the coin, the adversary cannot bias v after viewing the coin flip and with probability
at least fl all correct processes that adopt the coin’s value toss v.

In all cases, with probability greater than fl all correct processes have the same est value
at the end of r, whp. J

The following lemmas indicate that the Byzantine Agreement whp properties are satisfied,
which completes the proof of Theorem 21.

I Lemma 24. (Validity) If at the beginning of round r of Algorithm 4 all correct processes

have the same estimate value v, then whp any correct process that has not decided before

decides v in round r.

Proof. If all correct processes start round r then by Lemma 23 they all complete round r.
Since they all being with the same estimate value v, they all execute approve(v) in line 4.
Hence, by approver’s validity and termination, whp they all return the non-empty set {v}
and update their propose values to v. Then, they all execute approve(v) for the second time
in line 9, and due to the same reason, they all return {v} whp. Any correct process that has
not decided before decides v in line 13. J

I Lemma 25. (Termination) Every correct process decides whp.

ke
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Proof. By Lemma 23, for every round r of Algorithm 4, with probability greater than fl,
where fl is the success rate of the WHP coin, all correct processes have the same est value at
the end of r whp. Hence, by Lemma 24, with probability greater than fl, all correct processes
decide by round r + 1 whp. It follows that the expected number of rounds until all processes
decide is bounded by 1

fl , which is constant. Thus, by Chebyshev’s inequality, whp all correct
processes decide within a constant number of rounds. J

I Lemma 26. (Agreement) No two correct processes decide di�erent values whp.

Proof. Let r be the first round in which some process pi decides on some value v œ {0, 1}.
Thus, pi’s invocation to approver in line 9 of round r returns {v}. If another correct process
pj decides w in round r then its approver call in line 9 of round r returns {w}. By approver’s
graded agreement, v = w whp. Consider a correct process pk that does not decide in round
r. By the definition of r, pk hasn’t decided in any round r

Õ
< r. By approver’s graded

agreement, whp, pk returns {v, ‹} in line 9 of round r, and pk updates its estk value to v

in line 18. It follows that whp all correct processes have v as their estimate value at the
beginning of round r + 1. By Lemma 24, every correct process that has not decided in round
r decides v in round r + 1 whp. J

Complexity. In each round of the protocol, all correct processes invoke two approver
calls and one WHP coin instance. Due to the constant success rate of the WHP coin,
the expected number of rounds before all correct processes decide is constant. Thus, due
to the word complexity of the WHP coin and approver, the expected word complexity is
O(n log2

n) = ÂO(n) and the time complexity is O(1) in expectation.

7 Conclusions and Future Directions

We have presented the first sub-quadratic asynchronous Byzantine Agreement algorithm. To
construct the algorithm, we introduced two techniques. First, we presented a shared coin
algorithm that requires a trusted PKI and uses VRFs. Second, we formalized VRF-based
committee sampling in the asynchronous model for the first time.

Our algorithm solves Byzantine Agreement with high probability. It would be interesting
to understand whether some of the problem’s properties can be satisfied with probability 1,
while keeping the sub-quadratic communication cost. In addition, in order to achieve the
constant success rate of the coin and guarantee the committees’ properties, we bounded ‘

from below by a constant. This bound prevented us from achieving optimal resilience. The
question whether it is possible to relax this bound to allow better resilience remains open.

Acknowledgements

We thank Ittai Abraham, Dahlia Malkhi, Kartik Nayak and Ling Ren for insightful initial
discussions.

References
1 Ittai Abraham, TH Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and

Elaine Shi. Communication complexity of byzantine agreement, revisited. In Proceedings of

the 2019 ACM Symposium on Principles of Distributed Computing, pages 317–326, 2019.
2 Ittai Abraham, Guy Golan-Gueta, and Dahlia Malkhi. Hot-stu� the linear, optimal-resilience,

one-message bft devil. CoRR, abs/1803.05069, 2018.

kd



S. Cohen, I. Keidar and A. Spiegelman 17

3 Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated
asynchronous byzantine agreement. In Proceedings of the 2019 ACM Symposium on Principles

of Distributed Computing, pages 337–346, 2019.
4 Mohamad Ahmadi, Abdolhamid Ghodselahi, Fabian Kuhn, and Anisur Rahaman Molla. The

cost of global broadcast in dynamic radio networks. Theoretical Computer Science, 806:363–387,
2020.

5 Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich, Ronen Tamari,
and David Yakira. Helix: A scalable and fair consensus algorithm resistant to ordering
manipulation. IACR Cryptology ePrint Archive, 2018:863, 2018.

6 Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and

advanced topics, volume 19. John Wiley & Sons, 2004.
7 Baruch Awerbuch and Christian Scheideler. A denial-of-service resistant dht. In International

Symposium on Distributed Computing, pages 33–47. Springer, 2007.
8 Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, François Garillot, Zekun Li,

Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino. State machine replication
in the libra blockchain. The Libra Assn., Tech. Rep, 2019.

9 Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols. In Proceedings of the second annual ACM symposium on

Principles of distributed computing, pages 27–30. ACM, 1983.
10 Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine

agreement with subquadratic communication. Cryptology ePrint Archive, Report 2020/851,
2020.

11 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987.

12 Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Proceedings of the second

annual ACM symposium on Principles of distributed computing, pages 12–26. ACM, 1983.
13 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in Constantinople:

Practical asynchronous byzantine agreement using cryptography. Journal of Cryptology,
18(3):219–246, 2005.

14 Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In STOC, volume 93, pages 42–51. Citeseer, 1993.

15 Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. Algorand agreement: Super
fast and partition resilient byzantine agreement. IACR Cryptology ePrint Archive, 2018:377,
2018.

16 Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs
and keys. In International Workshop on Public Key Cryptography, pages 416–431. Springer,
2005.

17 Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement.
J. ACM, 32(1):191–204, January 1985.

18 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

19 Matthew Franklin and Haibin Zhang. Unique ring signatures: A practical construction.
In International Conference on Financial Cryptography and Data Security, pages 162–170.
Springer, 2013.

20 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on

Operating Systems Principles, pages 51–68, 2017.
21 Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology overview series,

consensus system. arXiv preprint arXiv:1805.04548, 2018.
22 Valerie King and Jared Saia. Breaking the O(n2) bit barrier: scalable byzantine agreement

with an adaptive adversary. Journal of the ACM (JACM), 58(4):1–24, 2011.

k3



18 Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

23 Valerie King and Jared Saia. Byzantine agreement in polynomial expected time. In Proceedings

of the forty-fifth annual ACM symposium on Theory of computing, pages 401–410. ACM, 2013.
24 Marek Klonowski, Dariusz R Kowalski, and Jaros≥aw Mirek. Ordered and delayed adversaries

and how to work against them on a shared channel. Distributed Computing, 32(5):379–403,
2019.

25 Jae Kwon. Tendermint: Consensus without mining. Draft v. 0.6, fall, 1(11), 2014.
26 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.

ACM, 21(7):558–565, July 1978.
27 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM

Trans. Program. Lang. Syst., 4(3):382–401, July 1982.
28 Silvio Micali. Very simple and e�cient byzantine agreement. In Christos H. Papadimitriou,

editor, 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January

9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs, pages 6:1–6:1. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ITCS.2017.6.

29 Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In Foundations

of Computer Science, 1999. 40th Annual Symposium on, pages 120–130. IEEE, 1999.
30 Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous

binary byzantine consensus with t < n/3, O(n2) messages, and O(1) expected time. Journal

of the ACM (JACM), 62(4):31, 2015.
31 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.
32 Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. Cogsworth: Byzantine

view synchronization. arXiv preprint arXiv:1909.05204, 2019.
33 Michael O Rabin. Randomized byzantine generals. In 24th Annual Symposium on Foundations

of Computer Science (sfcs 1983), pages 403–409. IEEE, 1983.
34 Peter Robinson, Christian Scheideler, and Alexander Setzer. Breaking the �(

Ô
n) barrier: Fast

consensus under a late adversary. In 30th ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA 2018, pages 173–182. ACM New York, 2018.
35 Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
36 Alexander Spiegelman. In search for an optimal authenticated byzantine agreement. In 35th

International Symposium on Distributed Computing, 2021.

kN



S. Cohen, I. Keidar and A. Spiegelman 19

Appendix A Sampling proofs

B Claim 27. For a string s and ⁄ = const · ln n the following hold with high probability:

(S1) |C(s, ⁄)| Æ (1 + d)⁄.
(S2) |C(s, ⁄)| Ø (1 ≠ d)⁄.
(S3) At least W processes in C(s, ⁄) are correct.
(S4) At most B processes in C(s, ⁄) are Byzantine.

Proof. Recall that d is a parameter of the system such that max{ 1
⁄ , 0.0362} < d <

‘
3 ≠ 1

3⁄ .
In order to prove these properties we use two Cherno� bounds:
Suppose X1, ..., Xn are independent random variables taking values in {0, 1}. Let X

denote their sum and let E[X] denote the sum’s expected value.

’0 Æ ” : Pr[X Ø (1 + ”)E[X]] Æ e
≠ ”2E[X]

2+” (3)

’0 Æ ” Æ 1 : Pr[X Æ (1 ≠ ”)E[X]] Æ e
≠ ”2E[X]

2 (4)

I Lemma 28 (S1). |C(s, ⁄)| Æ (1 + d)⁄ whp.

Proof. Let X be a random variable that represents the number of processes that are sampled
to C(s, ⁄). X ≥ Bin(n,

const·ln n)
n ), thus E[X] = const · ln n.

Placing ” = d Ø 0 in 3 we get:

Pr[X Ø (1 + d)const · ln n] Æ e
≠ d2const·ln n

2+d .

Denote by c1 the constant const·d2

2+d . We get:

Pr[X Ø (1 + d)const · ln n] Æ e
≠c1 ln n

.

Thus,

Pr[X < (1 + d)const · ln n] = Pr[X < (1 + d)⁄] > 1 ≠ 1
ec1 ln n

= 1 ≠ 1
nc1

.

J

I Lemma 29 (S2). |C(s, ⁄)| Ø (1 ≠ d)⁄ whp.

Proof. Let X be a random variable that represents the number of processes that are sampled
to C(s, ⁄). X ≥ Bin(n,

const·ln n
n ), thus E[X] = const · ln n.

Placing ” = d it holds that 0 Æ ” Æ 1 in 4 and we get:

Pr[X Ø (1 ≠ d)const · ln n] Æ e
≠ d2const·ln n

2 .

Denote by c2 the constant const·d2

2 . We get:

Pr[X Ø (1 ≠ d)const · ln n] Æ e
≠c2 ln n

.
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Thus,

Pr[X < (1 ≠ d)const · ln n] = Pr[X < (1 ≠ d)⁄] > 1 ≠ 1
ec2 ln n

= 1 ≠ 1
nc2

.

J

I Lemma 30 (S3). At least W processes in C(s, ⁄) are correct whp.

Proof. Let X be a random variable that represents the number of correct processes that
are sampled to C(s, ⁄). X ≥ Bin(( 2

3 + ‘)n,
const·ln n

n ), thus E[X] = ( 2
3 + ‘)const · ln n. Let

d
Õ = 3d + 1

⁄ . Notice that 1 ≠
2
3 +dÕ

2
3 +‘

Æ 1 and also 1 ≠
2
3 +dÕ

2
3 +‘

= 1 ≠
2
3 +3d+ 1

⁄
2
3 +‘

=
2
3 +‘≠ 2

3 ≠3d≠ 1
⁄

2
3 +‘

Ø
3
⁄ + 1

⁄ ≠3d≠ 1
⁄

2
3 +‘

Ø 0. Hence, we can put ” = 1 ≠
2
3 +dÕ

2
3 +‘

in (4) and get:

Pr[X Æ (1 ≠ (1 ≠
2
3 + d

Õ

2
3 + ‘

))(2
3 + ‘)const · ln n] Æ e

≠
(1≠

2
3 +dÕ

2
3 +‘

)2( 2
3 +‘)const·ln n

2 ,

P r[X Æ (
2
3 + d

Õ

2
3 + ‘

)(2
3 + ‘)const · ln n] Æ e

≠
(1≠

2
3 +dÕ

2
3 +‘

)2( 2
3 +‘)const·ln n

2 ,

P r[X Æ (2
3 + d

Õ)const · ln n] Æ e
≠

(1≠
2
3 +dÕ

2
3 +‘

)2( 2
3 +‘)const·ln n

2 .

Denote by c3 the constant
const·(1≠

2
3 +dÕ

2
3 +‘

)2( 2
3 +‘)

2 . We get:

Pr[X Æ (2
3 + d

Õ)const · ln n] Æ e
≠c3 ln n

.

Thus,

Pr[X > (2
3 + d

Õ)const · ln n] = Pr[X > (2
3 + d

Õ)⁄] > 1 ≠ 1
ec3 ln n

= 1 ≠ 1
nc3

.

To this point we’ve proved that at least ( 2
3 + d

Õ)⁄ processes in C(s, ⁄) are correct whp. It
follows that at least ( 2

3 + 3d + 1
⁄ )⁄ = ( 2

3 + 3d)⁄ + 1 processes in C(s, ⁄) are correct whp.
As

'
( 2

3 + 3d)⁄
(

Æ ( 2
3 + 3d)⁄ + 1 we conclude that at least W =

'
( 2

3 + 3d)⁄
(

processes in
C(s, ⁄) are correct whp.

J

I Lemma 31 (S4). At most B processes in C(s, ⁄) are Byzantine whp.

Proof. Let X be a random variable that represents the number of Byzantine processes that
are sampled to C(s, ⁄). X ≥ Bin(( 1

3 ≠ ‘)n,
const·ln n

n ), thus E[X] = ( 1
3 ≠ ‘)const · ln n.

Placing ” = ‘≠d
1
3 ≠‘

Ø 0 in (3) we get:

Pr[X Ø (1 + ‘ ≠ d

1
3 ≠ ‘

)(1
3 ≠ ‘)const · ln n] Æ e

≠
( ‘≠d

1
3 ≠‘

)2( 1
3 ≠‘)const·ln n

2+( ‘≠d
1
3 ≠‘

)
,
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Pr[X Ø (
1
3 ≠ d

1
3 ≠ ‘

)(1
3 ≠ ‘)const · ln n] Æ e

≠

(‘≠d)2
1
3 ≠‘

const·ln n

2+( ‘≠d
1
3 ≠‘

)
,

P r[X Ø (1
3 ≠ d)const · ln n] Æ e

≠

(‘≠d)2
1
3 ≠‘

const·ln n

2+( ‘≠d
1
3 ≠‘

)
.

Denote by c4 the constant
const· (‘≠d)2

1
3 ≠‘

2+( ‘≠d
1
3 ≠‘

) . We get:

Pr[X Ø (1
3 ≠ d)const · ln n] Æ e

≠c4 ln n
.

Thus,

Pr[X < (1
3 ≠ d)const · ln n] = Pr[X < (1

3 ≠ d)⁄] > 1 ≠ 1
ec4 ln n

= 1 ≠ 1
nc4

.

Since X must be an integer, it follows that X Æ B =
%
( 1

3 ≠ d)⁄
&

whp.
J

J

I Corollary 32 (S5). Consider C(s, ⁄) for some string s and some ⁄ = const · ln n and two

sets P1, P2 µ C(s, ⁄) s.t |P1| = |P2| = W . Then, |P1 fl P2| Ø B + 1.

Proof. The set P2 contains at most |C(s, ⁄) \ P1| processes that aren’t in P1. By S1, and
since P1 µ C(s, ⁄):

|C(s, ⁄)\P1| Æ (1+d)⁄≠W = (1+d)⁄≠
9

(2
3 + 3d)⁄

:
Æ (1+d)⁄≠(2

3 +3d)⁄ = (1
3 ≠2d)⁄.

The remaining processes in P2 are also in P1, so

|P1 flP2| Ø W ≠(1
3 ≠2d)⁄ =

9
(2
3 + 3d)⁄

:
≠(1

3 ≠2d)⁄ Ø (2
3 +3d)⁄≠(1

3 ≠2d)⁄ = (1
3 +5d)⁄.

Finally,

|P1 fl P2| ≠ B = |P1 fl P2| ≠
7

(1
3 ≠ d)⁄

8
Ø (1

3 + 5d)⁄ ≠ (1
3 ≠ d)⁄ = 6d⁄ >

6⁄

⁄
Ø 1,

as requested. J

I Corollary 33 (S6). Consider C(s, ⁄) for some string s and some ⁄ = const · ln n and two

sets P1, P2 µ C(s, ⁄) s.t |P1| = B + 1 and |P2| = W . Then, |P1 fl P2| Ø 1.

Proof. The set P2 contains at most |C(s, ⁄) \ P1| processes that aren’t in P1. By S1, and
since P1 µ C(s, ⁄):

|C(s, ⁄)\P1| Æ (1+d)⁄≠(B+1) = (1+d)⁄≠(
7

(1
3 ≠ d)⁄

8
+1) Æ (1+d)⁄≠((1

3≠d)⁄≠1)≠1 = (2
3+2d)⁄.

Therefore,

|P2|≠|C(s, ⁄)\P1| Ø W≠(2
3+2d)⁄ =

9
(2
3 + 3d)⁄

:
≠(2

3+2d)⁄ Ø (2
3 + 3d)⁄≠(2

3+2d)⁄ = d⁄ >
⁄

⁄
= 1,

and so |P1 fl P2| Ø 1, as requested. J
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Appendix B WHP Coin Proofs

In the committee-based protocol, a value v is common if at least B + 1 correct processes in
C(second, ⁄) have vi = v at the end of phase 1. The next lemma adapts the lower bound of
Lemma 3 on the number of common values to the committee-based protocol.

I Lemma 34. In Algorithm 2 whp, c Ø d(11≠3d)
1+9d ⁄.

Proof. Let n1 = |C(first, ⁄)|, n2 = |C(second, ⁄)|. We define a table T with n2 rows and
n1 columns. For each correct process pi œ C(second, ⁄) and each 0 Æ j Æ n1 ≠ 1, T [i, j] = 1
i� pi receives Èfirst, vÍ from pj œ P1 before sending the second message in line 10. Each
row of a correct process contains exactly W ones since it waits for W Èfirst, vÍ messages
(line 9). Each row of a faulty process in C(second, ⁄) is arbitrarily filled with W ones and
n1 ≠ W zeros. Thus the total number of ones in the table is n2W and the total number
of zeros is n2(n1 ≠ W ). Let k be the number of columns with at least 2B + 1 ones. Each
column represents a value sent by a process in C(first, ⁄). By S4, whp, at most B of the
processes that receive this value are Byzantine. Thus, whp, out of any 2B + 1 ones in each
of these columns, at least B + 1 represent correct processes that receive this value and it
follows that c Ø k.

Denote by x the number of ones in the remaining columns. Because each column has at
most n2 ones we get:

x Ø n2W ≠ kn2 = n2

9
(2
3 + 3d)⁄

:
≠ kn2 Ø n2(2

3 + 3d)⁄ ≠ kn2. (5)

And because the remaining columns have at most 2B ones:

x Æ 2B(n1 ≠ k) = 2
7

(1
3 ≠ d)⁄

8
(n1 ≠ k) Æ 2(1

3 ≠ d)⁄(n1 ≠ k). (6)

Combining (1), (2) we get:

2(1
3 ≠ d)⁄(n1 ≠ k) Ø n2(2

3 + 3d)⁄ ≠ kn2

kn2 ≠ 2⁄k(1
3 ≠ d) Ø n2(2

3 + 3d)⁄ ≠ 2(1
3 ≠ d)⁄n1

k(n2 ≠ 2⁄(1
3 ≠ d)) Ø ⁄(n2(2

3 + 3d) ≠ 2(1
3 ≠ d)n1)

k Ø
⁄(n2( 2

3 + 3d) ≠ 2( 1
3 ≠ d)n1)

n2 ≠ 2⁄( 1
3 ≠ d)

By S2 for C(second, ⁄), whp n2 Ø (1 ≠ d)⁄ and we get:

k Ø
⁄((1 ≠ d)⁄( 2

3 + 3d) ≠ 2( 1
3 ≠ d)n1)

n2 ≠ 2⁄( 1
3 ≠ d)
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By S1 for C(first, ⁄) and C(second, ⁄), whp n1, n2 Æ (1 + d)⁄ and we get:

k Ø
⁄

5
(1 ≠ d)⁄( 2

3 + 3d) ≠ 2( 1
3 ≠ d)(1 + d)⁄

6

(1 + d)⁄ ≠ 2⁄( 1
3 ≠ d)

=
⁄

5
(1 ≠ d)( 2

3 + 3d) ≠ 2( 1
3 ≠ d)(1 + d)

6

(1 + d) ≠ 2( 1
3 ≠ d)

Finally, we get whp:

c Ø k Ø d(11 ≠ 3d)
1 + 9d

⁄.

as required.
J

Let vmin , min
piœC(first,⁄)

{V RFi(r)}. Similiarly to Lemma 4, we prove that the probability

that it is common is bounded by a constant, whp. I.e., we show that Prob[vmin is common] Ø
const · g(n) where g(n) goes to 1 as n goes to infinity.

I Lemma 35. whp Prob[vmin is common] Ø 2
3(1≠d) · c≠B

(1+d)⁄≠B .

Proof. Notice that we assume that the invocation of whp_coin(r) by every process is
causally independent of its progress at other processes. Hence, for any two processes
pi, pj œ C(first, ⁄), the messages Èfirst, viÍ, Èfirst, vjÍ are causally concurrent. Thus, due
to our delayed-adaptive adversary definition, these messages are scheduled by the adversary
regardless of their content, namely their VRF random values. Notice that the adversary can
corrupt processes before they initially send their VRF values. By S4 there are at most B

Byzantine processes in C(first, ⁄). Since the adversary cannot predict the VRF outputs, the
probability for a given process to be corrupted before sending its first messages is at most

B
|C(first,⁄)| . The adversary is oblivious to the correct processes’ VRF values when it schedules
their first phase messages. Therefore, each of them has the same probability to become
common. Since at most B common values are from Byzantine processes, this probability
is at least c≠B

|C(first,⁄)|≠B . We conclude that vmin is common with probability at least
(1 ≠ B

|C(first,⁄)| )
c≠B

|C(first,⁄)|≠B . By S1 and S2 we get that (1 ≠ d)⁄ Æ |C(first, ⁄)| Æ (1 + d)⁄
whp.

Thus, whp, vmin is common with probability at least (1 ≠ B
(1≠d)⁄ ) c≠B

(1+d)⁄≠B = (1 ≠
Â( 1

3 ≠d)⁄Ê
(1≠d)⁄ ) c≠B

(1+d)⁄≠B Ø (1 ≠ ( 1
3 ≠d)⁄

(1≠d)⁄ ) c≠B
(1+d)⁄≠B = 2

3(1≠d) · c≠B
(1+d)⁄≠B .

J

I Lemma 36. If vmin is common then whp each correct process holds vmin at the end of

phase 2.

Proof. Since vmin is common, at least B + 1 correct members of C(second, ⁄) receive it
by the end of phase 1 and update their local values to vmin. During the second phase, each
correct process hears from W members of C(second, ⁄) whp. By S6, this means that it hears
from at least one correct process that has updated its value to vmin and sent it whp. J

I Lemma 37. Let fl = 18d2+27d≠1
3(5+6d)(1≠d)(1+9d) . Algorithm 2 implements a shared coin with success

rate fl, whp.
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Proof. Denote n1 = |C(first, ⁄)|. We bound whp the probability that all correct processes
output b œ {0, 1} as follows:

Prob[all correct processes output b] Ø Prob[all correct processes have the same vi at the
end of phase 2 and its LSB is b] Ø Prob[all correct processes have vi = vmin at the end

of phase 2 and its LSB is b] = 1
2 · Prob[all correct processes have vi = vmin]

Lemma 36
Ø

1
2 · Prob[vmin is common]

Lemma 35
Ø 1

2 · 2
3(1≠d) · c≠B

(1+d)⁄≠B

Lemma 34
Ø 1

3(1≠d) ·
d(11≠3d)

1+9d ⁄≠B

(1+d)⁄≠B =
1

3(1≠d) ·
d(11≠3d)

1+9d ⁄≠Â( 1
3 ≠d)⁄Ê

(1+d)⁄≠Â( 1
3 ≠d)⁄Ê Ø 1

3(1≠d) ·
d(11≠3d)

1+9d ⁄≠( 1
3 ≠d)⁄

(1+d)⁄≠(( 1
3 ≠d)⁄≠1) = 1

3(1≠d) · ⁄ 18d2+27d≠1
27d+3

⁄( 2
3 +2d)+1 Ø 1

3(1≠d) ·

⁄ 18d2+27d≠1
27d+3

⁄( 2
3 +2d)+⁄

= 18d2+27d≠1
3(5+6d)(1≠d)(1+9d) .

J

We have shown a bound on the coin’s success rate whp. Since d > 0.0362, the coin’s
success rate is a positive constant whp. We next prove that the coin ensures liveness whp.

I Lemma 38. If all correct processes invoke Algorithm 2 then all correct processes return

whp.

Proof. All correct processes in C(first, ⁄) send their message in the first phase. At least
W of them are correct whp by S3. All correct processes in C(second, ⁄) eventually receive
W Èfirst, xÍ messages whp and send a message in the second phase. As ,whp, again W

correct processes send their messages (by S3), each correct process eventually receives W

Èsecond, xÍ messages and returns whp. J

From Lemma 37 and Lemma 38 we conclude:

I Theorem 14. Algorithm 2 implements a WHP coin with a constant success rate.
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Abstract

We formalize Byzantine linearizability, a correctness condition that specifies whether a concurrent
object with a sequential specification is resilient against Byzantine failures. Using this definition, we
systematically study Byzantine-tolerant emulations of various objects from registers. We focus on
three useful objects– reliable broadcast, atomic snapshot, and asset transfer. We prove that there
exist n-process f -resilient Byzantine linearizable implementations of such objects from registers if
and only if f < n

2 .
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1 Introduction

Over the last decade, cryptocurrencies have taken the world by storm. The idea of a decen-
tralized bank, independent of personal motives has gained momentum, and cryptocurrencies
like Bitcoin [23], Ethereum [25], and Diem [8] now play a big part in the world’s economy.
At the core of most of these currencies lies the asset transfer problem. In this problem, there
are multiple accounts, operated by processes that wish to transfer assets between accounts.
This environment raises the need to tolerate the malicious behavior of processes that wish to
sabotage the system.

In this work, we consider the shared memory model that was somewhat neglected in
the Byzantine discussion. We believe that shared memory abstractions, implemented in
distributed settings, allow for an intuitive formulation of the services o�ered by blockchains
and similar decentralized tools. It is well-known that it is possible to implement reliable
read-write shared memory registers via message passing even if a fraction of the servers are
Byzantine [1, 21, 24, 19]. As a result, as long as the client processes using the service are
not malicious, any fault-tolerant object that can be constructed using registers can also be
implemented in the presence of Byzantine servers. However, it is not clear what can be done
with such objects when they are used by Byzantine client processes. In this work, we study
this question.

In Section 4 we define Byzantine linearizability, a correctness condition applicable to any
shared memory object with a sequential specification. Byzantine linearizability addresses
the usage of reliable shared memory abstractions by potentially Byzantine client processes.
We then systematically study the feasibility of implementing various Byzantine linearizable
shared memory objects from registers.

We observe that existing Byzantine fault-tolerant shared memory constructions [20, 22, 1]
in fact implement Byzantine linearizable registers. Such registers are the starting point of our
study. When trying to implement more complex objects (e.g., snapshots and asset transfer)
using registers, constructions that work in the crash-failure model no longer work when
Byzantine processes are involved, and new algorithms – or impossibility results – are needed.

As our first result, we prove in Section 5 that an asset transfer object used by Byzantine
client processes does not have a wait-free implementation, even when its API is reduced
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2 Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

to support only transfer operations (without reading processes’ balances). Furthermore, it
cannot be implemented without a majority of correct processes constantly taking steps. Asset
transfer has wait-free implementations from both reliable broadcast [7] and snapshots [17]
(which we adapt to a Byzantine version) and thus the same lower bound applies to reliable
broadcast and snapshots as well.

In Section 6, we present a Byzantine linearizable reliable broadcast algorithm with
resilience f < n

2 , proving that, for this object, the resilience bound is tight. To do so, we
define a sequential specification of a reliable broadcast object. Briefly, the object exposes
broadcast and deliver operations and we require that deliver return messages previously
broadcast. We show that a Byzantine linearizable implementation of such an object satisfies
the classical (message-passing) definition [10]. Finally, in Section 7 we present a Byzantine
linearizable snapshot with the same resilience. In contrast, previous constructions of Byzantine
lattice agreement, which can be directly constructed from a snapshot [6], required 3f + 1
processes to tolerate f failures.

All in all, we establish a tight bound on the resilience of emulations of three useful shared
memory objects from registers. On the one hand, we show that it is impossible to obtain
wait-free solutions as in the non-Byzantine model, and on the other hand, unlike previous
snapshot and lattice agreement algorithms, our solutions do not require n > 3f . Taken
jointly, our results yield the following theorem:

I Theorem 1. In the Byzantine shared memory model, there exist n-process f-resilient

Byzantine linearizable implementations of reliable broadcast, snapshot, and asset transfer

objects from registers if and only if f < n

2 .

Although the construction of reliable registers in message passing systems requires n > 3f
servers, our improved resilience applies to client processes, which are normally less reliable
than servers, particularly in the so-called permissioned model where servers are trusted and
clients are ephemeral.

In summary, we make the following contributions:

Formalizing Byzantine linearizability for any object with a sequential specification.
Proving that some of the most useful building blocks in distributed computing, such as
atomic snapshot and reliable broadcast, do not have f -resilient implementations from
SWMR registers when f Ø n

2 processes are Byzantine.
Presenting Byzantine linearizable implementations of a reliable broadcast object and a
snapshot object with the optimal resilience.

2 Related Work

In [4] Aguilera et al. present a non-equivocating broadcast algorithm in shared memory.
This broadcast primitive is weaker than reliable broadcast – it does not guarantee that all
correct processes deliver the same messages, but rather that they do not deliver conflicting
messages. A newer version of their work [5], developed concurrently and independently of
our work1, also implements reliable broadcast with n Ø 2f + 1, which is very similar to our
implementation. While the focus of their work is in the context of RDMA in the M&M

(message–and–memory) model, our work focuses on the classical shared memory model,
which can be emulated in classical message passing systems. While the algorithms are similar,

1 Their work [5] was in fact published shortly after the initial publication of our results [14].
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we formulate reliable broadcast as a shared memory object, with designated API method
signatures, which allows us to reason about the operation interval as needed for proving
(Byzantine) linearizability and for using this object in constructions of other shared memory
objects.

Given a reliable broadcast object, there are known implementations of lattice agree-
ment [16, 26], which resembles a snapshot object. However, these constructions require
n = 3f + 1 processes. In our work, we present both Byzantine linearizable reliable broadcast
and Byzantine snapshot, (from which Byzantine lattice agreement can be constructed [6]),
with resilience n = 2f + 1.

The asset transfer object we discuss in this paper was introduced by Guerraoui et
al. [17, 15]. Their work provides a formalization of the cryptocurrency definition [23]. The
highlight of their work is the observation that the asset transfer problem can be solved
without consensus. It is enough to maintain a partial order of transactions in the systems,
and in particular, every process can record its own transactions. They present a wait-free
linearizable implementation of asset transfer in crash-failure shared memory, taking advantage
of an atomic snapshot object. We show that we can use their solution, together with our
Byzantine snapshot, to solve Byzantine linearizable asset transfer with n = 2f + 1.

In addition, Guerraoui et al. present a Byzantine-tolerant solution in the message passing
model. This algorithm utilizes reliable broadcast, where dependencies of transactions are
explicitly broadcast along with the transactions. This solution does not translate to a
Byzantine linearizable one, but rather to a sequentially consistent asset transfer object. In
particular, reads can return old (superseded) values, and transfers may fail due to outdated
balance reads.

Finally, recent work by Auvolat et al. [7] continues this line of work. They show that a
FIFO order property between each pair of processes is su�cient in order to solve the asset
transfer problem. This is because transfer operations can be executed once a process’s balance
becomes su�cient to perform a transaction and there is no need to wait for all causally
preceding transactions. However, as a result, their algorithm is not sequentially consistent,
or even causally consistent for that matter. For example, assume process i maintains an
invariant that its balance is always at least 10, and performs a transfer with amount 5 after
another process deposits 5 into its account, increasing its balance to 15. Using the protocol
in [7], another process might observe i’s balance as 5 if it sees i’s outgoing transfer before the
causally preceding deposit. Because our solution is Byzantine linearizable, such anomalies
are prevented.

3 Model and Preliminaries

We study a distributed system in the shared memory model. Our system consists of a
well-known static set � = {1, . . . , n} of asynchronous client processes. These processes have
access to some shared memory objects. In the shared memory model, all communication
between processes is done through the API exposed by the objects in the system: processes
invoke operations that in turn, return some response to the process. In this work, we assume
a reliable shared memory. (Previous works have presented constructions of such reliable
shared memory in the message passing model [1, 21, 24, 3, 19]). We further assume an
adversary that may adaptively corrupt up to f processes in the course of a run. When the
adversary corrupts a process, it is defined as Byzantine and may deviate arbitrarily from the
protocol. As long as a process is not corrupted by the adversary, it is correct, follows the
protocol, and takes infinitely many steps. In particular, it continues to invoke the object’s
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API infinitely often. Later in the paper, we show that the latter assumption is necessary.
We enrich the model with a public key infrastructure (PKI). That is, every process is

equipped with a public-private key pair used to sign data and verify signatures of other
processes. We denote a value v signed by process i as ÈvÍi.

Executions and Histories. We discuss algorithms emulating some object O from lower
level objects (e.g., registers). An algorithm is organized as methods of O. A method execution
is a sequence of steps, beginning with the method’s invocation (invoke step), proceeding
through steps that access lower level objects (e.g., register read/write), and ending with a
return step. The invocation and response delineate the method’s execution interval. In an
execution ‡ of a Byzantine shared memory algorithm, each correct process invokes methods
sequentially, where steps of di�erent processes are interleaved. Byzantine processes take
arbitrary steps regardless of the protocol. The history H of an execution ‡ is the sequence
of high-level invocation and response events of the emulated object O in ‡.

A sub-history of a history H is a sub-sequence of the events of H. A history H is
sequential if it begins with an invocation and each invocation, except possibly the last, is
immediately followed by a matching response. Operation op is pending in a history H if op
is invoked in H but does not have a matching response event.

A history defines a partial order on operations: operation op1 precedes op2 in history H,
denoted op1 ªH op2, if the response event of op1 precedes the invocation event of op2 in H.
Two operations are concurrent if neither precedes the other.

Linearizability. A popular correctness condition for concurrent objects in the crash-
fault model is linearizability [18], which is defined with respect to an object’s sequential
specification. A linearization of a concurrent history H of object o is a sequential history
H Õ such that (1) after removing some pending operations from H and completing others by
adding matching responses, it contains the same invocations and responses as H Õ, (2) H Õ

preserves the partial order ªH , and (3) H Õ satisfies o’s sequential specification.
f-resilient. An algorithm is f-resilient if as long as at most f processes fail, every correct

process eventually returns from each operation it invokes. A wait-free algorithm is a special
case where f = n ≠ 1.

Single Writer Multiple Readers Register. The basic building block in shared
memory is a single writer multiple readers (SWMR) register that exposes read and write

operations. Such registers are used to construct more complicated objects. The sequential
specification of a SWMR register states that every read operation from register R returns
the value last written to R. Note that if the writer is Byzantine, it can cause a correct reader
to read arbitrary values.

Asset Transfer Object. In [17, 15], the asset transfer problem is formulated as a sequen-
tial object type, called Asset Transfer Object. The asset transfer object maintains a mapping
from processes in the system to their balances2. Initially, the mapping contains the initial
balances of all processes. The object exposes a transfer operation, transfer(src,dst,amount),
which can be invoked by process src (only). It withdraws amount from process src’s account
and deposits it at process dst’s account provided that src’s balance was at least amount. It
returns a boolean that states whether the transfer was successful (i.e., src had amount to
spend). In addition, the object exposes a read(i) operation that returns the current balance
of i.

2 The definition in [17] allows processes to own multiple accounts. For simplicity, we assume a single
account per-process, as in [15].
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4 Byzantine Linearizability

In this section we define Byzantine linearizability. Intuitively, we would like to tame the
Byzantine behavior in a way that provides consistency to correct processes. We linearize the
correct processes’ operations and o�er a degree of freedom to embed additional operations
by Byzantine processes.

We denote by H|correct the projection of a history H to all correct processes. We say
that a history H is Byzantine linearizable if H|correct can be augmented with operations of
Byzantine processes such that the completed history is linearizable. That is, there is another
history, with the same operations by correct processes as in H, and additional operations by
another at most f processes. In particular, if there are no Byzantine failures then Byzantine
linearizability is simply linearizability. Formally:

I Definition 2. (Byzantine Linearizability) A history H is Byzantine linearizable if there

exists a history H Õ
so that H Õ|correct = H|correct and H Õ

is linearizable.

Similarly to linearizability, we say that an object is Byzantine linearizable if all of its
executions are Byzantine Linearizable.

Next, we characterize objects for which Byzantine linearizability is meaningful. The
most fundamental component in shared memory is read-write registers. Not surprisingly,
such registers, whether they are single-writer or multi-writers ones are de facto Byzantine
linearizable without any changes. This is because before every read from a Byzantine register,
invoked by a correct process, one can add a corresponding Byzantine write.

In practice, multiple writers multiple readers (MWMR) registers are useless in a Byzantine
environment as an adversary that controls the scheduler can prevent any communication
between correct processes. SWMR registers, however, are still useful for constructing more
meaningful objects. Nevertheless, the constructions used in the crash-failure model for
linearizable objects do not preserve this property. For instance, if we allow Byzantine
processes to run a classic atomic snapshot algorithm [2] using Byzantine linearizable SWMR
registers, it will not result in a Byzantine linearizable snapshot object. The reason is that
the algorithm relies on correct processes being able to perform “double-collect” meaning that
at some point a correct process manages to read all registers twice without witnessing any
changes. While this is true in the crash-failure model, in the Byzantine model this is not the
case as the adversary can change some registers just before any correct read.

Relationship to Other Correctness Conditions

Byzantine linearizability provides a simple and intuitive way to capture Byzantine behavior
in the shared memory model. We now examine the relationship of Byzantine linearizability
with previously suggested correctness conditions involving Byzantine processes.

PBFT [12, 11] presented a formalization of linearizability in the presence of Byzantine-
faulty clients in message passing systems. Their notion of linearizability is formulated in the
form of I/O automata. Their specification is in the same spirit as ours, but our formulation
is closer to the original notion of linearizability in shared memory.

Some works have defined linearization conditions for specific objects. This includes
conditions for SWMR registers [22], a distributed ledger [13], and asset transfer [7]. Our
condition coincides with these definitions for the specific objects and thus generalizes all
of them. Liskov and Rodrigues [20] presented a correctness condition that has additional
restrictions. Their correctness notion relies on the idea that Byzantine processes are eventually
detected and removed from the system and focuses on converging to correct system behavior
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6 Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

after their departure. While this model is a good fit when the threat model is software
bugs or malicious intrusions, it is less appropriate for settings like cryptocurrencies, where
Byzantine behavior cannot be expected to eventually stop.

5 Lower Bound on Resilience

In shared memory, one typically aims for wait-free objects, which tolerate any number of
process failures. Indeed, many useful objects have wait-free implementations from SWMR
registers in the non-Byzantine case. This includes reliable broadcast, snapshots, and as
recently shown, also asset transfer. We now show that in the Byzantine case, wait-free
implementations of these objects are impossible. Moreover, a majority of correct processes is
required.

I Theorem 3. In the Byzantine shared memory model, for any f > 2, there does not exist a

Byzantine linearizable implementation of asset transfer that supports only transfer operations

in a system with n Æ 2f processes, f of which can be Byzantine, using only SWMR registers.

Note that to prove this impossibility, it does not su�ce to introduce bogus actions by
Byzantine processes, because the notion of Byzantine linearizability allows us to ignore these
actions. Rather, to derive the contradiction, we create runs where the bogus behavior of the
Byzantine processes leads to incorrect behavior of the correct processes.

Proof. Assume by contradiction that there is such an algorithm. Let us look at a system with
n = 2f correct processes. Partition � as follows: � = A fi B fi {p1, p2}, where |A| = f ≠ 1,
|B| = f ≠ 1, A fl B = ÿ, and p1, p2 /œ A fi B. By assumption, |A| > 1. Let z be a process
in A. Also, by assumption |B| Ø 2. Let q1, q2 be processes in B. The initial balance of all
processes but z is 0, and the initial balance of z is 1. We construct four executions as shown
in Figure 1.

Let ‡1 be an execution where, only processes in A fi {p1} take steps. First, z performs
transfer(z, p1,1). Since up to f processes may be faulty, the operation completes, and
by the object’s sequential specification, it is successful (returns true). Then, p1 performs
transfer(p1, q1,1). By f -resilience and linearizability, this operation also completes successfully.
Note that in ‡1 no process is actually faulty, but because of f -resilience, progress is achieved
when f processes are silent.

Similarly, let ‡2 be an execution where the processes in A fi {p2} are correct, and z
performs transfer(z, p2,1), followed by p2 performing transfer(p2, q2,1).

We now construct ‡3, where all processes in A fi {p1} are Byzantine. We first run ‡1. Call
the time when it ends t1. At this point, all processes in A fi {p1} restore their registers to
their initial states. Note that no other processes took steps during ‡1, hence the entire shared
memory is now in its initial state. Then, we execute ‡2. Because we have reset the memory
to its initial state, the operations execute the same way. When ‡2 completes, processes in
A\{z} fi {p1} restore their registers to their state at time t1. At this point, the state of z
and p2 is the same as it was at the end of ‡2, the state of processes in A \ {z} fi {p1} is the
same as it was at the end of ‡1, and processes in B are all in their initial states.

We construct ‡4 where all processes in A fi {p2} are Byzantine by executing ‡2, having
all processes in A fi {p2} reset their memory, executing ‡1, and then having z and p2 restore
their registers to their state at the end of ‡2. At this point, the state of z and p2 is the same
as it was at the end of ‡2, the state of processes in A \ {z} fi {p1} is the same as it was at
the end of ‡1, and processes in B are all in their initial states.
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Figure 1 An asset transfer object does not have an f -resilient implementation for n Æ 2f .

We observe that for processes in B, the configurations at the end of ‡3 and ‡4 are
indistinguishable as they did not take any steps and the global memory is the same. By
f -resilience, in both cases q1 and q2, together with processes in B and one of {p1, p2} should
be able to make progress at the end of each of these runs. We extend the runs by having q1
and q2 invoke transfers of amount 1 to each other. In both runs processes in B fi {p1, p2} help
them make progress. In ‡3, p1 behaves as if it is a correct process and its local state is the
same as it is at the end of ‡1, and in ‡4 p2 behaves as if it is a correct process and its local
state is the same as it is at the end of ‡2. Thus, ‡3 and ‡4 are indistinguishable to all correct
processes, and as a result q1 and q2 act the same in both runs. However, from safety exactly
one of their transfers should succeed. In ‡3, p2 is correct and transfer(p2, q2,1) succeeds,
allowing q2 to transfer 1 and disallowing the transfer from q1, whereas ‡4 the opposite is
true. This is a contradiction. J

Guerraoui et al. [17] use an atomic snapshot to implement an asset transfer object in
the crash-fault shared memory model. In addition, they handle Byzantine processes in the
message passing model by taking advantage of reliable broadcast. In Appendix A we show
that their atomic snapshot-based asset transfer can be easily adapted to the Byzantine
settings by using a Byzantine linearizable snapshot, resulting in a Byzantine linearizable asset
transfer. Their reliable broadcast-based algorithm, on the other hand, is not linearizable
and therefore not Byzantine linearizable even when using Byzantine linearizable reliable
broadcast. Nonetheless, Auvolat et al. [7] have used reliable broadcast to construct an asset
transfer object where transfer operations are linearizable (although reads are not).

We note that our lower bound holds for an asset transfer object without read operations.
This discussion and the construction in Appendix A lead us to the following corollary:

I Corollary 4. In the Byzantine shared memory model, for any f > 2, there does not exist an

f -resilient Byzantine linearizable implementation of an atomic snapshot or reliable broadcast

in a system with f Ø n

2 Byzantine processes using only SWMR registers.

Furthermore, we prove in the following lemma that in order to provide f -resilience it is
required that at least a majority of correct processes take steps infinitely often, justifying
our model definition.

I Lemma 5. In the Byzantine shared memory model, for any f > 2, there does not exist an

f -resilient Byzantine linearizable implementation of asset transfer in a system with n Ø 2f +1
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processes, f of which can be Byzantine, using only SWMR registers if less than f + 1 correct

processes take steps infinitely often.

Proof. Assume by way of contradiction that there exists an f -resilient Byzantine linearizable
implementation of asset transfer in a system with n Ø 2f + 1 processes where there are at
most f correct processes that take steps infinitely often. Denote these f correct processes by
the set A. Thus, there is a point t in any execution such that from time t, only processes
in A and Byzantine processes take any steps. Starting t, the implementation is equivalent
to one in a system with n = 2f , f of them may be Byzantine. This is a contradiction
to Theorem 3. J

6 Byzantine Linearizable Reliable Broadcast

With the acknowledgment that not all is possible, we seek to find Byzantine linearizable
objects that are useful even without a wait-free implementation. One of the practical objects
is a reliable broadcast object. We already proved in the previous section that it does not
have an f -resilient Byzantine linearizable implementation, for any f Ø max{3, n

2 }. In this
section we provide an implementation that tolerates f < n

2 faults.

6.1 Reliable Broadcast Object

The reliable broadcast primitive exposes two operations broadcast(ts,m) returning void and
deliver(j,ts) returning m. When deliverj(i, ts) returns m we say that process j delivers m
from process i in timestamp ts. The broadcast operation allows processes to spread a message
m in the system, along with some timestamp ts. The use of timestamps allows processes to
broadcast multiple messages.

Its classical definition, given for message passing systems [10], requires the following
properties:

Validity: If a correct process i broadcasts (ts, m) then all correct processes eventually
deliver m from process i in timestamp ts.
Agreement: If a correct process delivers m from process i in timestamp ts, then all correct
processes eventually deliver m from process i in timestamp ts.
Integrity: No process delivers two di�erent messages for the same (ts, j) and if j is correct
delivers only messages j previously broadcast.

In the shared memory model, the deliver operation for some process j and timestamp ts
returns the message with timestamp ts previously broadcast by j, if exists. We define the
sequential specification of reliable broadcast as follows:

I Definition 6. A reliable broadcast object exposes two operations broadcast(ts,m) returning

void and deliver(j,ts) returning m. A call to deliver(j,ts) returns the value m of the first

broadcast(ts,m) invoked by process j before the deliver operation. If j did not invoke broadcast
before the deliver, then it returns ‹.

Note that as the definition above refers to sequential histories, the first broadcast operation
(if such exists) is well-defined. Further, whereas in message passing systems reliable broadcast
works in a push fashion, where the receipt of a message triggers action at its destination,
in the shared memory model processes need to actively pull information from the registers.
A process pulls from another process j using the deliver(j,ts) operation and returns with
a value m ”= ‹. If all messages are eventually pulled, the reliable broadcast properties are
achieved, as proven in the following lemma.
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I Lemma 7. A Byzantine linearization of a reliable broadcast object satisfies the three

properties of reliable broadcast.

Proof. If a correct process broadcasts m, and all messages are subsequently pulled then
according to Definition 6 all correct processes deliver m, providing validity. For agreement, if
a correct process invokes deliver(j,ts) that returns m and all messages are later pulled by all
correct processes, it follows that all correct processes also invoke deliver(j,ts) and eventually
return mÕ ”= ‹. Since deliver(j,ts) returns the value v of the first broadcast(ts,v) invoked by
process j before it is called, and there is only one first broadcast, and we get that m = mÕ.
Lastly, if deliver(j,ts) returns m, by the specification, j previously invoked broadcast(ts,m).

J

6.2 Reliable Broadcast Algorithm

In our implementation (given in Algorithm 1), each process has 4 SWMR registers: send,
echo, ready, and deliver, to which we refer as stages of the broadcast. We follow concepts
from Bracha’s implementation in the message passing model [9] but leverage the shared
memory to improve its resilience from 3f + 1 to 2f + 1. The basic idea is that a process
that wishes to broadcast value v writes it in its send register (line 4) and returns only when
it reaches the deliver stage. I.e., v appears in the deliver register of at least one correct
process. Throughout the run, processes infinitely often call a refresh function whose role is
to help the progress of the system. When refreshing, processes read all registers and help
promote broadcast values through the 4 stages. For a value to be delivered, it has to have
been read and signed by f + 1 processes at the ready stage. Because each broadcast message
is copied to 4 registers of each process, the space complexity is 4n per message. Whether
this complexity can be improved remains as an open question.

In the refresh function, executed for all processes, at first a process reads the last value
written to a send register (line 16). If the value is a signed pair of a message and a timestamp,
refresh then copies it to the process’s echo register in line 18. In the echo register, the value
remains as evidence, preventing conflicting values (sent by Byzantine processes) from being
delivered. That is, before promoting a value to the ready or deliver stage, a correct process i
performs a “double-collect” of the echo registers (in lines 19,21). Namely, after collecting
f + 1 signatures on a value in ready registers, meaning that it was previously written in the
echo of at least one correct process, i re-reads all echo registers to verify that there does
not exist a conflicting value (with the same timestamp and sender). Using this method,
concurrent deliver operations “see” each other, and delivery of conflicting values broadcast
by a Byzantine process is prevented. Before delivering a value, a process writes it to its
deliver register with f + 1 signatures (line 22). Once one correct process delivers a value, the
following deliver calls can witness the f + 1 signatures and copy this value directly from its
deliver register (line 11).

We make two assumptions on the correct usage of our algorithm. The first is inherently
required as shown in Lemma 5:

I Assumption 1. All correct processes infinitely often invoke methods of the reliable broadcast

API.

The second is a straight forward validity assumption:

I Assumption 2. Correct processes do not invoke broadcast(ts,val) twice with the same ts.

We now prove our reliable broadcast algorithm’s correctness. We first notice:
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Algorithm 1 Shared Memory Bracha: code for process i

shared SWMR registers: sendi, echoi, readyi, deliveri

1: procedure conflicting-echo(Èts, vÍj)
2: return ÷w ”= v, k œ � such that Èts, wÍj œ echok

3: procedure broadcast(ts,val)
4: sendi Ω Èts, valÍi

5: repeat
6: m Ω deliver(i,ts)
7: until m ”= ‹ Û message is deliverable

8: procedure deliver(j,ts)
9: refresh()

10: if ÷k œ � and v s.t. ÈÈts, vÍj , ‡Í œ deliverk where ‡ is a set of f + 1 signatures on
Èready, Èts, vÍjÍ then

11: deliveri Ω deliveri fi {ÈÈts, vÍj , ‡Í}
12: return v
13: return ‹

14: procedure refresh
15: for j œ [n] do
16: m Ω sendj

17: if @ts, val s.t. m = Èts, valÍj then continue Û m is not a signed pair
18: echoi Ω echoi fi {m}
19: if ¬conflicting-echo(m) then
20: readyi Ω readyi fi {Èready, mÍi}
21: if ÷S ™ � s.t. |S| Ø f + 1, ’j œ S, Èready, mÍj œ readyj and ¬conflicting-echo(m)

then
22: deliveri Ω deliveri fi {Èm, ‡ = {Èready, mÍj |j œ S}Í} Û ‡ is the set of f + 1

signatures

I Observation 8. If process i is correct and v appears in echoi or readyi it is never deleted.

I Lemma 9. If process i is correct and ÈÈts, vÍi, ‡Í appears in deliverj for any process j
then i previously invoked broadcast(ts, v).

Proof. Since we assume unforgeable signatures, i has previously signed Èts, vÍ. By the code,
this is only possible if i invoked broadcast(ts, v). J

We next prove the following lemma, identifying invariants of Algorithm 1.

I Lemma 10. Algorithm 1 satisfies the following invariants:

I1: If ÈÈts, vÍi, ‡Í (where ‡ is a set of f + 1 ready signatures) appears in deliverj for

any processes i, j, then Èready, Èts, vÍiÍk œ readyk for a correct process k.

I2: If Èready, Èts, vÍiÍj œ readyj for a correct process j, then Èts, vÍi œ echoj.

I3: If Èready, Èts, vÍiÍj appears in readyj and Èready, Èts, wÍiÍjÕ appears in readyjÕ for

any two correct processes j, jÕ
then v = w.
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Figure 2 Concurrent deliver operations.

I4: If ÈÈts, vÍi, ‡Í appears in deliverj and ÈÈts, wÍi, ‡Í appears in deliverjÕ for any two

correct processes j, jÕ
then v = w.

Proof. I1: Since ÈÈts, vÍi, ‡Í appears in deliverj and it contains a set of f +1 signatures
on Èready, Èts, vÍiÍ, there is at least one correct process k that signed Èready, Èts, vÍiÍ
and added it to its ready register. By Observation 8, it is not deleted from the register.

I2: Immediate from the code and Observation 8.
I3: Since Èready, Èts, vÍi0jÍ appears in readyj and j is correct, by I2 at least one correct
process signed Èts, vÍi and added it to its echo register. Let p1 be the first correct
process to do so, and let t1 be the moment of adding Èts, vÍi to echop1 (see Figure 2
for illustration). By Observation 8, it is not deleted from the register. Similarly, let
p2 be the first correct process to add Èts, wÍi to echop2 at time t2. WLOG, t1 Ø t2.
In addition, let p3 be the first correct process to add Èready, Èts, vÍiÍ to readyp3 , and
let t3 be the moment of the addition. By I2 it follows that t3 > t1. By Observation 8,
the content of echop2 and readyp3 is not deleted during the run. By the protocol, at
some point in time between t1 and t3, p3 executes line 19 and reads all echo registers.
Let t1 < tú < t3 be the time when p3 reads echop2 . Since t1 Ø t2 we conclude that
tú > t2. Since, p3 does not see a conflicting value in echop2 , we get that v = w.

I4: By I1 at least one correct process j signed Èready, Èts, vÍiÍ and added it to readyj

and at least one correct process jÕ signed Èready, Èts, wÍiÍ and added it to readyjÕ .
Thus, by I3 v = w.

J

Let us examine an execution E of the algorithm. Let H be the history of E. First,
we define Hc to be the history H after removing any pending deliver operations and any
pending broadcast operations that did not complete line 11 (which is called from line 6). We
define H Õ to be an augmentation of Hc|correct as follows. For every Byzantine process j
and a value v such that v is returned by deliveri(j,ts) for at least one correct process i, we
add to H Õ a broadcastj(ts,v) operation that begins and ends immediately before the first
correct process adds ÈÈts, vÍj , ‡Í to its delivery register. Since at least one correct process
adds this value at line 11, this moment is well-defined. We construct a linearization EÕ of H Õ

by defining the following linearization points:

Let o be a broadcasti(ts,v) operation by a correct process i that completed line 11. Note
that by the code every completed broadcast operation completes line 11 exactly once, and
operations that do not complete this line are removed from H Õ. The operation linearizes
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when ÈÈts, vÍj , ‡Í is added for the first time to delivery register of a correct process, which
occurs either when i executes line 11 or when another correct process executes line 22
beforehand. By the code, these lines are between the invocation and the return of the
broadcast procedure.
Let o be a deliveri(j,ts) operation by a correct process i that completes line 11 and
returns v ”= ‹ (note that by the code every completed deliver operation that returns
v ”= ‹ completes line 11 exactly once). If i finds ÈÈts, vÍj , ‡Í for some value v in some
correct process’ deliver register at line 10, then the operation linearizes when i first reads
ÈÈts, vÍj , ‡Í from a correct process. Otherwise, it linearizes at line 11 when i copies the
data to deliveri.
If o is a completed deliveri(j,ts) operation by a correct process i that returns ‹ it linearizes
at the moment of its invocation.
Every Byzantine broadcastj(ts,v) operation by process j linearizes at the moment we
added it.

In H Õ there are no deliver operations by Byzantine processes. The following lemmas
prove that EÕ, the linearization of H Õ, satisfies the sequential specification:

I Lemma 11. For a given deliver(j,ts) operation that returns v ”= ‹, there is at least one

preceding broadcast operation in EÕ
of the form broadcast(ts,v) invoked by process j.

Proof. Let o be a deliveri(j,ts) operation invoked by a correct process i that returns v ”= ‹.
Let t be the time when ÈÈts, vÍj , ‡Í is added for the first time to a delivery register of a
correct process (where ‡ contains f + 1 ready signatures). If j is correct then by Lemma 9 j
previously invoked broadcast(ts,v) and that broadcast linearizes at time t. If j is Byzantine
then broadcast(ts,v) by process j is added to H Õ immediately before t. There are two options
to the linearization point of o. If i finds ÈÈts, vÍj , ‡Í in some correct process’ deliver register
at line 10, then o linearizes when i first reads ÈÈts, vÍj , ‡Í from a correct process and thus it
is after time t. Otherwise, it linearizes at line 11 when i copies the data to deliveri, which is
also no earlier than time t. J

I Lemma 12. For a broadcasti(ts,v) in EÕ
, there does not exist any broadcasti(ts,w) in EÕ

for v ”= w.

Proof. If i is a correct process, the proof follows from Assumption 2. If i is Byzantine,
broadcasti(ts,v) is added immediately before the first correct process adds ÈÈts, vÍi, ‡Í to its
delivery register. By I4, no correct processes add ÈÈts, wÍi, ‡Í to their delivery register for
v ”= w and broadcasti(ts,w) does not appear in EÕ. J

I Lemma 13. For a given deliver(j,ts) operation that returns ‹, there is no preceding

broadcast operation in H Õ
of the form broadcast(ts,v) invoked by process j, for v ”= ‹.

Proof. Let o be a deliver(j,ts) operation invoked by a correct process i that returns ‹.
Assume by way of contradiction that there is a preceding broadcast(ts,v) operation in H Õ

invoked by process j, for v ”= ‹. By definition, the broadcast linearizes no later than the
first adding of ÈÈts, vÍj , ‡Í to a delivery register of a correct process. Thus, since o linearizes
at the moment of its invocation, it sees ÈÈts, vÍj , ‡Í at some process’ delivery register and
returns v ”= ‹, in contradiction. J

Next, we prove f -resilience.

I Lemma 14. (Liveness) Every correct process that invokes some operation eventually

returns.

93



S. Cohen and I. Keidar 13

Proof. If a correct process i invokes a deliver operation then by the code it returns in a
constant time. If it invokes broadcast(ts,v), it copies Èts, vÍi to sendi. By Assumption 1, all
correct processes infinitely often call the reliable broadcast API and specifically the refresh
procedure, see Èts, vÍi and copy it to their echo registers. As signatures are unforgable and i
is correct they do not find Èts, wÍi for any other w ”= v in any other echo registers and copy a
signed Èready, Èts, wÍiÍ to their ready registers. By I8, eventually they all see Èready, Èts, wÍiÍ
in f + 1 ready registers and copy Èts, wÍi to their deliver registers. Eventually f + 1 correct
processes have Èts, wÍi in their deliver registers, and since the signatures are valid, the check
at line 10 evaluates to true, and i returns v and finish the repeat loop. J

We conclude the following theorem:

I Theorem 15. Algorithm 1 implements an f -resilient Byzantine linearizable reliable broad-

cast object for any f < n

2 .

7 Byzantine Linearizable Snapshot

In this section, we utilize a reliable broadcast primitive to construct a Byzantine snapshot
object with resilience n > 2f .

7.1 Snapshot Object

A snapshot [2] is represented as an array of n shared single-writer variables that can be
accessed with two operations: update(v), called by process i, updates the ith entry in the
array and snapshot returns an array. The sequential specification of an atomic snapshot is as
follows: the ith entry of the array returned by a snapshot invocation contains the value v

last updated by an update(v) invoked by process i, or its variable’s initial value if no update
was invoked.

Following Lemma 5, we again must require that correct processes perform operations
infinitely often. For simplicity, we require that they invoke infinitely many snapshot operations;
if processes invoke either snapshots or updates, we can have each update perform a snapshot
and ignore its result.

I Assumption 3. All correct processes invoke snapshot operations infinitely often.

7.2 Snapshot Algorithm

Our pseudo-code is presented in Algorithms 2 and 3. During the algorithm, we compare
snapshots using the (partial) coordinate-wise order. That is, let s1 and s2 be two n-arrays.
We say that s2 > s1 if ’i œ [n], s2[i].ts > s1[i].ts.

Recall that all processes invoke snapshot operations infinitely often. In each snapshot
instance, correct processes start by collecting values from all registers and broadcasting their
collected arrays in “start” messages (message with timestamp 0). Then, they repeatedly
send the identities of processes from which they delivered start messages until there exists
a round such that the same set of senders is received from f + 1 processes in that round.
Once this occurs, it means that the f + 1 processes see the exact same start messages and
the snapshot is formed as the supremum of the collects in their start messages.

We achieve optimal resilience by waiting for only f + 1 processes to send the same set.
Although there is not necessarily a correct process in the intersection of two sets of size f + 1,
we leverage the fact that reliable broadcast prevents equivocation to ensure that nevertheless,
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Algorithm 2 Byzantine Snapshot: code for process i

shared SWMR registers: ’j œ [n] collectedi[j] œ {‹} fi {N ◊ V als} with selectors ts and
val, initially ‹
’k œ N, savesnapi[k] œ {‹} fi {array of n V als ◊ set of messages} with selectors snap
and proof, initially ‹
local variables: tsi œ N, initially 0
’j œ [n], rtsi[j] œ N, initially 0
r, auxnum œ N, initially 0
p œ [n], initially 1
’j œ [n], k œ N, seeni[j][k],sendersi œ P(�), initially ÿ
‡ Ω ÿ set of messages

1: procedure update(v)
2: for j œ [n] do Û collect current memory state
3: update-collect(collectedj)
4: tsi Ω tsi + 1
5: collectedi[i] Ω Ètsi, vÍi Û update local component of collected

6: procedure snapshot
7: for j œ [n] do Û collect current memory state
8: update-collect(collectedj)
9: c Ω collectedi

10: repeat
11: auxnum Ω auxnum + 1
12: snap Ω snapshot-aux(auxnum)
13: until snap Ø c Û snapshot is newer than the collected state
14: return snap

15: procedure update-collect(c)
16: for k œ [n] do
17: if c[k].ts > collectedi[k].ts and c[k] is signed by k then
18: collectedi[k] Ω c[k]

there is a common message in the intersection, so two snapshots obtained in the same round
are necessarily identical. Moreover, once one process obtains a snapshot s, any snapshot seen
in a later round exceeds s.

Each process i collects values from all processes’ registers in a shared variable collecti.
When starting a snapshot operation, each process runs update-collect, where it updates its
collect array (line 8) and saves it in a local variable c (line 9). When it does so, it updates the
ith entry to be the highest-timestamped value it observes in the ith entries of all processes’
collect arrays (lines 16 – 18). Then, it initiates the snapshot-aux procedure with a new
auxnum tag. Snapshot-aux returns a snapshot, but not necessarily a “fresh” one that reflects
all updates that occurred before snapshot was invoked. Therefore, snapshot-aux is repeatedly
called until it collects a snapshot s such that s Ø c, according to the snapshots partial order
(lines 10 – 13).

By Assumption 3 and since the auxnum variable at each correct process is increased
by 1 every time snapshot-aux is called, all correct processes participate in all instances
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Algorithm 3 Byzantine Snapshot auxiliary procedures: code for process i

19: procedure minimum-saved(auxnum)
20: S Ω {s|÷j œ [n], s = savesnapj [auxnum].snap and savesnapj [auxnum].proof is a

valid proof of s}
21: if S = ÿ then
22: return ‹
23: res Ω infimum(S) Û returns the minimum value in each index
24: savesnapi[auxnum] Ω Ères,

t
jœ[n] savesnapj [auxnum].proofÍ

25: update-collect(res)
26: return res

27: procedure snapshot-aux(auxnum)
28: initiate new reliable broadcast instance
29: ‡ Ω ÿ
30: for j œ [n] do Û collect current memory state
31: update-collect(collectedj)
32: sendersi Ω {i} Û start message contains collect
33: broadcast(0,ÈcollectiÍi)
34: while true do
35: cached Ω minimum-saved(auxnum) Û check if there is a saved snapshot
36: if cached ”= ‹ then return cached

37: p Ω (p + 1) mod n + 1 Û deliver messages in round robin
38: m Ω deliver(p, rtsi[p]) Û deliver next message from p
39: if m = ‹ then continue
40: if rtsi[p]= 0 and m contains a signed collect array c then

Û start message (round 0)
41: ‡ Ω ‡ fi {m}
42: update-collect(c)
43: sendersi Ω sendersi fi {j}
44: else if m contains a signed set of processes, jsenders then

Û round r message for r > 0
45: if jsenders * sendersi then
46: continue Û cannot process message, its dependencies are missing
47: ‡ Ω ‡ fi {m}
48: seeni[j][rtsi[p]] Ω jsenders fi seeni[j][rtsi[p] ≠ 1]
49: rtsi[p] Ω rtsi[p] + 1

50: if received f + 1 round-r messages for the first time then
51: r Ω r + 1
52: broadcast(r, ÈsendersiÍi)

53: if ÷s s.t. |{j| seeni[j][s] = sendersi}| = f + 1 then Û stability condition
54: r Ω 0
55: sendersiΩ ÿ
56: ’j œ [n], k œ N, seeni[j][k]Ω ÿ
57: cached Ω minimum-saved(auxnum) Û re-check for saved snapshot
58: if cached ”= ‹ then return cached

59: savesnapi[auxnum] Ω Ècollecti, ‡Í
Û ‡ contains all received messages in this snapshot-aux instance

60: return collecti
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of snapshot-aux. When a correct process invokes a snapshot-aux procedure with auxnum,
it first initiates a new reliable broadcast instance at line 28, dedicated to this instance
of snapshot-aux. Note that although processes invoke one snapshot-aux at a time, they
may engage in multiple reliable broadcast instances simultaneously. That is, they continue
to partake in previous reliable broadcast instances after starting a new one. As another
preliminary step of snapshot-aux, each correct process once again updates its collect array
using the update-collect procedure (lines 30– 31) and broadcasts it to all processes at line 33.
During the execution, a correct processes delivers messages from all other processes in a
round robin fashion. The local variable p represents the process from which it currently
delivers. In addition, rts[p] maintains the next timestamp to be delivered from p (lines 38,
49, 37). Note that if the delivered message at some point is ‹, rts[p] is not increased, so all
of p’s messages are delivered in order (line 39).

Snapshot-aux proceeds in rounds, which are reflected in the timestamps of the messages
broadcast during its execution. Each correct process starts snapshot-aux at round 0, where
it broadcasts its collected array; we refer to this as its start message. It then continues to
round r + 1 once it has delivered f + 1 round r messages (line 51). Each process maintains a
local set senders that contains the processes from which it received start messages (line 43).
In every round (from 1 onward) processes send the set of processes from which they received
start messages (line 52).

Process i maintains a local map seen[j][r] that maps a process j and a round r to the set
of processes that j reported to have received start messages from in rounds 1–r (line 48), but
only if i has received start messages from all the reported processes (line 45). By doing so,
we ensure that if for some correct process i and a round r seeni[j][r] contains a process l, l
is also in sendersi. If this condition is not satisfied, the delivered counter for j (rts[j]) is not
increased and this message will be repeatedly delivered until the condition is satisfied.

Once there is a process i such that there exists a round s and there is a set S of f + 1
processes j for which seeni[j][s] is equal to sendersi, we say that the stability condition

at line 53 is satisfied for S. At that time, i and f more processes agree on the collected
arrays sent at round 0 by processes in sendersi, and collecti holds the supremum of those
collected arrays. This is because whenever it received a start message, it updated its collect
so that currently collecti reflects all collects sent by processes in sendersi. Thus, i can return
its current collect as the snapshot-aux result. Since reliable broadcast prevents Byzantine
processes from equivocating, there are f more processes that broadcast the same senders
set at that round, and any future round will “see” this set. As we later show, after at most
n + 1 rounds, the stability condition holds and hence the size of seen is O(n3). Together
with the collected arrays, the total space complexity is cubic in n.

To ensure liveness in case some correct processes complete a snapshot-aux instance before
all do, we add a helping mechanism. Whenever a correct process successfully completes
snapshot-aux, it stores its result in a savesnap map, with the auxnum as the key (either at
line 24 or at line 59). This way, once one correct process returns from snapshot-aux, others
can read its result at line 35 and return as well. To prevent Byzantine processes from storing
invalid snapshots, each entry in the savesnap map is a tuple of the returned array and a proof
of the array’s validity. The proof is the set of messages received by the process that stores
its array in the current instance of snapshot-aux. Using these messages, correct processes
can verify the legitimacy of the stored array. If a correct process reads from savesnap a tuple
with an invalid proof, it simply ignores it.
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7.3 Correctness

We outline the key correctness arguments highlighting the main lemmas. Formal proofs of
auxiliary lemmas appear in Appendix B. To prove our algorithm is Byzantine linearizable,
we first show that all returned snapshots are totally ordered (by coordinate-wise order):

I Lemma 16. If two snapshot operations invoked by correct processes return si and sj, then

sj Ø si or sj < si.

Based on this order, we define a linearization. Then, we show that our linearization
preserves real-time order, and it respects the sequential specification. We construct the
linearization E as follows: First, we linearize all snapshot operations of correct processes
in the order of their return values. Then, we linearize every update operation by a correct
process immediately before the first snapshot operation that “sees” it. We say that a snapshot
returning s sees an update by process j that has timestamp ts if s[j].ts Ø ts. If multiple
updates are linearized to the same point (before the same snapshot), we order them by their
start times. Finally, we add updates by Byzantine processes as follows: We add update(v) by
a Byzantine process j if there is a linearized snapshot that returns s and s[j].val = v. We
add the update immediately before any snapshot that sees it.

We next prove that the linearization respects the sequential specification.

I Lemma 17. The ith
entry of the array returned by a snapshot invocation contains the

value v last updated by an update(v) invoked by process i in E, or its variable’s initial value

if no update was invoked.

Proof. Let v be the value in the ith entry of the array returned by a snapshot, with a
corresponding timestamp tsv. By the definition of E, update(v) by process i with timestamp
ts is linearized immediately before tsv Ø ts. If i is correct and multiple update operations by
i are linearized at that point, then since i invokes updates sequentially and by Lemmas 26
and 27 their start times are ordered according to the increasing timestamps. Thus, as updates
are linearized by their start times, v matches the value of the last update. If i is Byzantine,
since we add updates only for values at the moment they are seen, v must match the value of
the last update. Additionally, if v is an initial value, then no updates were linearized before
it in E. J

Because an update is linearized immediately before some snapshot sees it and snapshots
are monotonically increasing, all following snapshots see the update as well. Next, we prove
in the two following lemmas that E preserves the real-time order.

I Lemma 18. If a snapshot operation invoked by a correct process i with return value si

precedes a snapshot operation invoked by a correct process j with return value sj , then si Æ sj .

Proof. Assume i invokes snapshot operation snapi, which returns si before j invokes snapshot
snapj , returning sj . Let c1 be the value of collecti that j reads at line 8 of snapj and let
c2 be the value it writes in collectj at line 9. At the end of the last snapshot-aux in snapi,
collectedi Ø si either because the return value is collectedi (if snapshot-aux returns at
line 60), or because si is reflected in collect by the end of line 25 if it is a savesnap returned
at line 36 or at line 58. Due to the monotonicity of collects (Lemma 27), si Æ c1. Because j
reads c1 when calculating c2, c1 Æ c2. Finally, by Observation 28, c2 Æ sj and by transitivity
we get that si Æ sj . J

I Lemma 19. Let s be the return value of a snapshot operation snapi invoked by a correct

process i. Let updatej(v) be an update operation invoked by a correct process j that writes

Èts, vÍ and completes before snapi starts. Then, s[j].ts Ø ts.
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Proof. Let t1 be the time when j completes line 5 in updatej(v) and writes Èts, vÍ. Let t2 be
the time when i reads collectj [i] at line 8 in snapi. By Lemmas 26 and 27, since j is correct,
it follows that collectj [j].ts Ø ts at time t2 Ø t1. Thus, after line 9 in snapi collecti[j].ts Ø ts
and by Observation 28, s[j].ts Ø ts.

J

It follows from Lemma 19 and the definition of E, that if an update precedes a snapshot
it is linearized before it, and from Lemma 18 that if a snapshot precedes a snapshot it is also
linearized before it. The following lemma ensures that if an update precedes another update
it is linearized before it. That is, if a snapshot operation sees the second update, it sees the
first one.

I Lemma 20. If update1 by process i precedes update2 by process j and a snapshot operation

snap by a correct process sees update2, then snap sees update1 as well.

Proof. Let s be the return value of a snapshot that sees update2. By Observation 30, s is
the supremum of collect arrays sent at line 33. If s sees update2, by Lemma 26, it means
that s reflects collectj after line 5 of update2. After, j performed line 3 and update1 was
reflected in collectj . Hence, s sees update1 as well. J

Finally, the next lemmas prove the liveness of our algorithm.

I Lemma 21. Every correct process that invokes snapshot-aux(auxnum) eventually returns.

Proof. Assume by induction on auxnum that all snapshot-aux instances with kÕ < k (if any)
have returned at all correct processes. Then, for auxnum=k, all correct processes initiate
reliable broadcast instances and broadcast È0, cÍ. This is because all correct processes invoke
snapshot infinitely often. Since all messages by correct processes are eventually delivered,
they all eventually complete line 50 in each round. Because |senders| is bounded, eventually
the senders sets of all correct processes stabilize, and due to reliable broadcast, they contain
the same set of processes for all correct processes. Thus, there is a round r for which
the condition at line 53 is satisfied. Therefore, at least one correct process returns from
snapshot-aux at line 60 (if it did not return sooner). Before returning, it updates its savesnap
register at line 59. If it returns at line 36 or at line 58 it also updates its savesnap register at
line 24. Every other correct process that has not yet returned from snapshot-aux will read
the updated savesnap in the next while iteration and will return at line 36. J

I Lemma 22. (Liveness) Every correct process that invokes some operation eventually

returns.

Proof. If a correct process i invokes an update operation then by the code it returns in
constant time. If i invokes a snapshot operation at time t, let c be the collected array at
line 8. Additionally, let k be the maximum auxnum of any snapshot-aux operation that
was initiated by some process before time t. By Lemma 21, all snapshot-aux invocations
eventually return. At snapshot-aux(k + 1), all correct processes see c at lines 30–31 when
they update their collect. Since the return value is the supremum of f + 1 collect arrays, it
is guaranteed that when i executes snapshot-aux(k + 1), the returned value res will satisfy
res Ø c. J

We conclude the following theorem:

I Theorem 23. Algorithm 2 implements an f -resilient Byzantine linearizable snapshot object

for any f < n

2 .
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Proof. Lemma 16 shows that there is a total order on snapshot operations. Using this order,
we have defined a linearization E that satisfies the sequential specification (Lemma 17). We
then proved that E also preserves real-time order (Lemmas 18 – 20). Thus, Algorithm 2 is
Byzantine linearizable. In addition, Lemma 22 proves that Algorithm 2 is f -resilient. J

8 Conclusions

We have studied shared memory constructions in the presence of Byzantine processes. To
this end, we have defined Byzantine linearizability, a correctness condition suitable for shared
memory algorithms that can tolerate Byzantine behavior. We then used this notion to present
both upper and lower bounds on some of the most fundamental components in distributed
computing.

We proved that atomic snapshot, reliable broadcast, and asset transfer are all problems
that do not have f -resilient emulations from registers when n Æ 2f . On the other hand,
we have presented an algorithm for Byzantine linearizable reliable broadcast with resilience
n > 2f . We then used it to implement a Byzantine snapshot with the same resilience.
Among other applications, this Byzantine snapshot can be utilized to provide a Byzantine
linearizable asset transfer. Thus, we proved a tight bound on the resilience of emulations of
asset transfer, snapshot, and reliable broadcast.

Our paper deals with feasibility results and does not focus on complexity measures. In
particular, we assume unbounded storage in our constructions. We leave the subject of
e�ciency as an open question for future work.

References

1 Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk paxos:
optimal resilience with byzantine shared memory. Distributed Computing, 18(5):387–408, 2006.

2 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic
snapshots of shared memory. Journal of the ACM (JACM), 40(4):873–890, 1993.

3 Yehuda Afek, David S Greenberg, Michael Merritt, and Gadi Taubenfeld. Computing with
faulty shared objects. Journal of the ACM (JACM), 42(6):1231–1274, 1995.

4 Marcos K Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra Marathe, and Igor
Zablotchi. The impact of rdma on agreement. In Proceedings of the 2019 ACM Symposium on

Principles of Distributed Computing, pages 409–418, 2019.
5 Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra Marathe, and Igor

Zablotchi. The impact of rdma on agreement, 2021. arXiv:1905.12143.
6 Hagit Attiya, Maurice Herlihy, and Ophir Rachman. E�cient atomic snapshots using lattice

agreement. In International Workshop on Distributed Algorithms, pages 35–53. Springer, 1992.
7 Alex Auvolat, Davide Frey, Michel Raynal, and François Taïani. Money transfer made simple:

a specification, a generic algorithm, and its proof. Bulletin of EATCS, 3(132), 2020.
8 Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, François Garillot, Zekun Li,

Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino. State machine replication
in the libra blockchain. The Libra Assn., Tech. Rep, 2019.

9 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987.

10 Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to reliable and secure

distributed programming. Springer Science & Business Media, 2011.
11 Miguel Castro, Barbara Liskov, et al. A correctness proof for a practical byzantine-fault-

tolerant replication algorithm. Technical report, Technical Memo MIT/LCS/TM-590, MIT
Laboratory for Computer Science, 1999.

88



20 Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer

12 Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173–186, 1999.

13 Vicent Cholvi, Antonio Fernandez Anta, Chryssis Georgiou, Nicolas Nicolaou, and Michel
Raynal. Atomic appends in asynchronous byzantine distributed ledgers. In 2020 16th European

Dependable Computing Conference (EDCC), pages 77–84. IEEE, 2020.
14 Shir Cohen and Idit Keidar. Tame the wild with byzantine linearizability: Reliable broadcast,

snapshots, and asset transfer. In 35th International Symposium on Distributed Computing,
page 1, 2021.

15 Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti, Matej
Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, and Athanasios
Xygkis. Online payments by merely broadcasting messages. In 2020 50th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN), pages 26–38. IEEE,
2020.

16 Giuseppe Antonio Di Luna, Emmanuelle Anceaume, and Leonardo Querzoni. Byzantine
generalized lattice agreement. In 2020 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), pages 674–683. IEEE, 2020.
17 Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovi�, and Dragos-Adrian Seredin-

schi. The consensus number of a cryptocurrency. In Proceedings of the 2019 ACM Symposium

on Principles of Distributed Computing, pages 307–316, 2019.
18 Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for

concurrent objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

19 Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free shared
objects. Journal of the ACM (JACM), 45(3):451–500, 1998.

20 Barbara Liskov and Rodrigo Rodrigues. Byzantine clients rendered harmless. In International

Symposium on Distributed Computing, pages 487–489. Springer, 2005.
21 Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal byzantine storage. In

International Symposium on Distributed Computing, pages 311–325. Springer, 2002.
22 Achour Mostéfaoui, Matoula Petrolia, Michel Raynal, and Claude Jard. Atomic read/write

memory in signature-free byzantine asynchronous message-passing systems. Theory of Com-

puting Systems, 60(4):677–694, 2017.
23 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report, Manubot,

2009.
24 Rodrigo Rodrigues and Barbara Liskov. Rosebud: A scalable byzantine-fault-tolerant storage

architecture. Technical report, 2003.
25 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum

project yellow paper, 151(2014):1–32, 2014.
26 Xiong Zheng and Vijay K. Garg. Byzantine lattice agreement in asynchronous systems. In

Quentin Bramas, Rotem Oshman, and Paolo Romano, editors, 24th International Conference

on Principles of Distributed Systems, OPODIS 2020, December 14-16, 2020, Strasbourg, France

(Virtual Conference), volume 184 of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.OPODIS.2020.4.

8e



S. Cohen and I. Keidar 21

Appendix A Byzantine Asset Transfer

In this section we adapt the asset transfer implementation from snapshots given in [17] to a
Byzantine asset transfer. The algorithm is very simple. It is based on a shared snapshot array
S, with a cell for each client process i, representing i’s outgoing transactions. An additional
immutable array holds all processes’ initial balances. A process i’s balance is computed by
taking a snapshot of S and applying all of i’s valid incoming and outgoing transfers to i’s
initial balance. A transfer invoked by process i checks if i’s balance is su�cient, and if so,
appends the transfer details (source, destination, and amount) to i’s cell. Similarly to the
use of dependencies in the (message-passing broadcast-based) asset transfer algorithm of [17],
we also track the history of every transaction. To this end, we append to the process’s cell
also the snapshot taken to compute the balance for each transaction.

I Theorem 24. Algorithm 4 implements an f -resilient Byzantine linearizable asset transfer

object for any f < n

2 .

Proof. At any point during a sequential execution, we denote by B(p) the balance of
process p. Recall that the operation transfer(src, dst, amount) causes the following changes:
B(src) = B(src) ≠ amount and B(dst) = B(dst) + amount.

In addition, at any point during a concurrent execution, we represent by balance(p) the
balance of process p derived from the state as follows:

If p is a correct process:

balance(p) def= initial(p)

+
ÿ

jœcorrect(�)
amount | txn = Èú, j, p, amount, úÍ œ S[j] · valid(txn)

+
ÿ

jœByzantine(�)
amount | txn = Èú, j, p, amount, úÍ œ S[j] · valid(txn)

· txn was read by some correct process

≠
ÿ

jœ�
amount | txn = Èú, p, j, amount, úÍ œ S[p] · valid(txn)

If p is a Byzantine process:

balance(p) def= initial(p)

+
ÿ

jœcorrect(�)
amount | txn = Èú, j, p, amount, úÍ œ S[j] · valid(txn)

+
ÿ

jœByzantine(�)
amount | txn = Èú, j, p, amount, úÍ œ S[j] · valid(txn)

· txn was read by some correct process

≠
ÿ

jœ�
amount | txn = Èú, p, j, amount, úÍ œ S[p] · valid(txn)

· txn was read by some correct process

Let us examine an execution E of the algorithm. Let H be the history of E. First, we
define Hc to be the history H after removing any pending read operations and any pending
transfer operations that did not complete line 18. We define H Õ to be an augmentation of
Hc|correct as follows.
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Algorithm 4 Byzantine Asset Transfer: code for process i

shared Byzantine snapshot: S
initial– immutable array of initial balances
local variables: txnsi – sets of outgoing transaction, initially {}
tsi œ N, initially 0
snap – array of sets of transactions, initially array of empty sets Û the last snapshot
taken

struct txn contains:
timestamp ts,
source src,
destination dst,
amount amount

1: procedure balance(j,snap)
2: incoming Ω 0
3: outgoing Ω 0
4: for l œ [n] do
5: for k œ snap[l] do
6: if snap[l][k].dst = j and valid(snap[l][k]) then
7: incoming Ω incoming + snap[l][k].amount

8: for k œ snap[j] do
9: if valid(snap[j][k]) then

10: outgoing Ω outgoing + snap[j][k].amount

11: return initial(j) + incoming ≠ outgoing

12: procedure transfer(src,dst,amount)
13: tsi Ω tsi + 1
14: snap Ω S.snapshot()
15: if balance(src, snap) < amount then
16: return false
17: txnsi Ω txnsi.append(Ètsi, src, dst, amount, snapÍi)
18: S.update(txnsi)
19: return true

20: procedure read(j)
21: snap Ω S.snapshot()
22: return balance(j, snap)
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For every Byzantine process j and a transaction txn = (ts, j, dst, amount, deps) such that
txn appears in the array returned by the snapshot procedure (either in line 21 or line 14) for
at least one correct process i, we add to H Õ a transferj(j,dst,amount) operation that begins
and ends immediately before the first correct process performs that snapshot procedure.
Since at least one correct process reads this transaction, this moment is well-defined. We
construct a linearization EÕ of H Õ by defining the following linearization points:

Let o be a readi(j) operation by a correct process i that completes line 14. The operation
linearizes at that moment.
Let o be a transferi(i,dst,amount) operation by a correct process i that completed line 18.
The operation linearizes at that moment. Note that operations that do not complete this
line are removed from H Õ. By the code, these lines are between the invocation and the
return of the broadcast procedure.
If o is a completed transferi(i,dst,amount) operation by a correct process i that returns
false it linearizes at line 21.
Every Byzantine transferj(j,dst,amount) operation by process j linearizes at the moment
we added it.

In H Õ there are no read operations by Byzantine processes. It is clear from construction
that each operation invoked by a correct process is mapped to some point between its invoca-
tion event and its response event. We now prove that the concrete concurrent run simulates
the specification. That is, if we execute the sequential run defined by the linearization points
the changes in the balances (represented by B) reflects the actual changes on balance. Before
the execution begins, B(p) is the initial balance of process p. As the snapshot is empty
before the run begins, it holds by definition that B(p) = balance(p). We now show that at
any point B(p) = balance(p).

We prove the equivalence of B(p) and balance(p) by induction on the steps in the
executions. We assume that the claim holds before a particular step and show that it remains
the same after each step. For a correct process p, balances(p) changes at line 18 when some
transfer involving p is updated in the snapshot. As this is the linearization point of a transfer
operation, the same change in balance also applies to B(p) at that moment. For a Byzantine
process p, balances(p) changes at line 14 or line 14 when its transaction is being read by a
correct process. A transfer operation by Byzantine processes is added immediately before
the first correct process reads it, so this change also reflect B(p) at that moment.

Next, we prove f -resilience.

I Lemma 25. (Liveness) Every correct process that invokes some operation eventually

returns.

Proof. This is immediate from the snapshot f -resilient guarantees and the fact that all other
operations are local computations. J

J

Appendix B Byzantine Snapshot: Correctness

I Lemma 26. For a correct process i, at each point during an execution collecti[i] contains

the value signed by j with the highest timestamp until that point.
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Proof. By induction on the execution; collecti[i] can change either at line 5 or at line 18.
If it changes at line 5, tsi is increased and collecti[i] contains the value with the highest
timestamp. By induction, no signed value encountered at line 17 has s timestamp higher
than the one in collecti[i], so it is not updated at line 18. J

I Lemma 27. For a correct process i, collecti is monotonically increasing.

Proof. Let j œ [n]. We prove that every time the value in collecti[j] is updated from m to
mÕ, it holds that mÕ.ts > m.ts. By the code collecti[j] changes either at line 5 or at line 18.
In both cases, the value in collecti[j] is signed by j. If collecti[j] changes at line 18, then
monotonicity is immediate from the condition at line 17. Otherwise, it changes at line 5,
indicating that i = j and monotonicity follows from Lemma 26. J

I Observation 28. For a snapshot operation invoked by a correct process i, let ci be the

collected array at line 8 and let s be the return value. Then, s Ø ci.

Proof. Immediate from the condition at line 13. J

I Invariant 1. For any correct process i that invokes snapshot-aux(k), it holds that collecti

is the supremum of the arrays in start message sent by processes in sendersi from line 33

and until the return value of snapshot-aux(k) is determined at line 23 or at line 60.

Proof. First, at line 33 sendersi contains i itself, and i sends exactly its collecti array. The
argument continues by induction on steps of snapshot-aux(k). Other than line 25, collecti

and sendersi change together: Whenever i receives a start message with an array c from
process j, it updates collecti with the higher-timestamped values found in c and adds j to
sendersi (lines 42– 43).

J

I Definition 29. We say that the stability condition holds for a return value s1 of snapshot-

aux(k) with a round r and a set of processes S if (1) |S| Ø f + 1, (2) there is a set SÕ ´ S
so that for each p œ S the union of all jsenders sets sent in p’s messages in rounds 1 to r is

SÕ
, and (3) s1 is the supremum of the collects sent in start messages of members of SÕ

.

I Observation 30. If s1 is returned from snapshot-aux(k) by a correct process i, then s1
satisfies the stability condition for some set S in some round r.

Proof. Consider two cases. First, if i returns s1 at line 60, then the condition is satisfied
for s1 with the round s that satisfies the condition at line 53 and the set of f + 1 processes
for which the condition at line 53 holds. SÕ is the set in sendersi at the time the condition
is satisfied. Since messages are delivered in order, we get that SÕ ´ S. Because the return
value is collecti, (3) follows from Invariant 1.

Second, if i adopts a saved snapshot s1 with a proof and returns at line 36 or at line 58,
then the proof contains f + 1 messages from some round r and corresponding start messages
satisfying the stability condition. J

I Lemma 31. For a given k, Let i, j be two correct processes that return si, sj from snapshot-

aux(k). Then si Æ sj or si > sj.

Proof. By Observation 30, si satisfies the stability condition for some set S1 in some round
r1. Let SÕ

1 be the set guaranteed from the definition. Also by Observation 30, sj satisfies the
stability condition and some set S2 in some round r2. Let SÕ

2 be the set guaranteed from the
definition.
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Since |S1| Ø f + 1 and |S2| Ø f + 1, there is at least one process p œ S1 fl S2. Due to
reliable broadcast, p cannot equivocate with the set of processes jsenders sent in each round
of snapshot-aux(k).

If r1 = r2: By property (2) of Definition 29 SÕ
1 = SÕ

2, and by (3) si = sj .
If r1 ”= r2: Assume WLOG r1 < r2. Since the union of all jsenders sets sent in p’s
messages in rounds 1 to r2 is a superset of those sent in rounds 1 to r1, S2 ´ S1 and then
by (3) sj Ø si.

J

I Lemma 32. Let i, j be two correct processes returning si, sj resp. from snapshot-aux

with auxnum = k, such that sj > si. Then when i begins any snapshot-auxi(kÕ) for kÕ > k,

collecti > sj.

Proof. Since j is correct, by Observation 30, sj satisfies the stability condition. Let t1 be
a time when the condition is satisfied. At time t1, there is at least one correct process
l such that collectl Ø sj . We show that either (1) j does not return sj or (2) i begins
snapshot-auxi(kÕ) with collecti > sj . If i begins snapshot-auxi(kÕ) after t1, then when it
updates its collect at lines 30–31, it reads the values in collectl. By Lemma 27, collectl is
greater than or equal to its value at time t1. Thus, we get that collecti Ø collectl Ø sj and
(2) holds. Otherwise, i saves si at line 59 before starting snapshot-aux(kÕ), which is before
time t1. Between time t1 and the time it returns sj , j checks stored snapshots (at line 21).
When it does so, j reads si, and since sj > si and j returns the minimal array it sees, (1)
holds.

J

I Lemma 33. If snapshot-auxi(k) of a correct process i returns si, there is a correct process

j s.t. j invoked snapshot-auxj(k) and si Ø cj, where cj is the value of collectedj after the

collection at line 31 in snapshot-aux(k) at j.

Proof. If snapshot-auxi(k) returns at line 60, then i returns collecti and by Lemma 27,
si = collecti is greater than or equal to its value after the collection at line 31 so the lemma
holds with i = j. Otherwise, snapshot-auxi(k) returns si at line 36 or at line 58 and si is an
array saved in savesnap with a proof ‡ signed by process p. Since i validates si, there was a
round r such that |{j| seenp[j][s] = sendersp}| Ø f + 1. Thus, there was at least one correct
process j in this set. Since j adds itself to sendersj (Section 7.1), sendersj is broadcast by
j at every round (Section 7.1), and it is the set added to seen, the array cj sent in j’s start
message is reflected in si. This set is exactly the value of collectedj after the collection at
line 31 in snapshot-aux(k) at j, and hence si Ø cj . J

Lemma 16. If two snapshot operations invoked by correct processes return si and sj, then

sj Ø si or sj < si.

Proof. By the code, si is the return value of some snapshot-auxi(ki) and sj is the return
value of some snapshot-auxj(kj). WLOG, ki Ø kj .

If ki = kj , the proof follows from Lemma 31.
If ki > kj : By Lemma 33, there is a correct process l that invoked snapshot-auxl(ki),
collected cl at line 31 of snapshot-auxl(ki) (where cl is the value of collectedl at that
time), and si Ø cl. Let sl be the return value of snapshot-auxl(kj) (note that l invokes
snapshot-aux with increasing auxnums, so such a value exists). Consider two cases. First,
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if sj > sl, then by Lemma 32, sj Æ cl. Thus, sj Æ cl Æ si and the lemma follows.
Otherwise, sj Æ sl. At the end of snapshot-auxl(kj) collectedl Ø sl because either the
return value is collectedl, or sl is reflected in collect by the end of line 25. Due to the
monotonicity of collects (Lemma 27), sl Æ cl. We conclude that sj Æ sl Æ cl Æ si, as
required.

J
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Abstract
Advances in blockchains have influenced the State-Machine-Replication (SMR) world and many
state-of-the-art blockchain-SMR solutions are based on two pillars: Chaining and Leader-rotation.
A predetermined round-robin mechanism used for Leader-rotation, however, has an undesirable
behavior: crashed parties become designated leaders infinitely often, slowing down overall system
performance. In this paper, we provide a new Leader-Aware SMR framework that, among other
desirable properties, formalizes a Leader-utilization requirement that bounds the number of rounds
whose leaders are faulty in crash-only executions.

We introduce Carousel, a novel, reputation-based Leader-rotation solution to achieve Leader-
Aware SMR. The challenge in adaptive Leader-rotation is that it cannot rely on consensus to
determine a leader, since consensus itself needs a leader. Carousel uses the available on-chain
information to determine a leader locally and achieves Liveness despite this di�culty. A HotStu�
implementation fitted with Carousel demonstrates drastic performance improvements: it increases
throughput over 2x in faultless settings and provided a 20x throughput increase and 5x latency
reduction in the presence of faults.

2012 ACM Subject Classification Theory of computation æ Distributed algorithms

Keywords and phrases SMR; Leader-election, Chain-quality

1 Introduction

Recently, Byzantine agreement protocols in the eventually synchronous model such as
Tendermint [5], Casper FFG [6], and HotStu� [22], brought two important concepts from
the world of blockchains to the traditional State Machine Replication (SMR) [12] settings,
Leader-rotation and Chaining. More specifically, these algorithms operate by designating
one party as leader of each round to propose the next block of transactions that extends
a chained sequence of blocks. Both properties depart from the approach used by classical
protocols such as PBFT [7], Multi-Paxos [13] and Raft [17] (the latter two in benign settings).
In those solutions, a stable leader operates until it fails and then it is replaced by a new
leader. Agreement is formed on an immutable sequence of indexed (rather than chained)
transactions, organized in slots.
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2 Be Aware of Your Leaders

Leader-rotation is important in a Byzantine setting, since parties should not trust each
other for load sharing, reward management, resisting censoring of submitted transactions,
or ordering requests fairly [11]. The advantage of Chaining is that it simplifies the leader
handover since in the common case the chain eliminates the need for new leaders to catch up
with outcomes from previous slots.

In the permissioned SMR settings [1], most existing Leader-rotation mechanisms use a
round-robin approach to rotate leaders [8, 21, 22]. This guarantees that honest parties get a
chance to be leaders infinitely often, which is su�cient to drive progress and satisfy Chain-
quality [10]. Roughly speaking, the latter stipulates that the number of blocks committed to
the chain by honest parties is proportional to the honest nodes’ percentage. The drawback of
such a mechanism is that it does not bound the number of faulty parties which are designated
as leaders during an execution. This has a negative e�ect on latency even in crash-only
executions, as each crashed leader delays progress. Similarly to XFT [14], we seek to improve
the performance in such executions. Unlike XFT, we also maintain Chain-quality to thwart
Byzantine attacks.

In this paper, we propose a leader-rotation mechanism, Carousel, that enjoys both worlds.
Carousel satisfies non-zero Chain-quality, and at the same time, bounds the number of faulty
leaders in crash-only executions after the global stabilization time (GST), a property we
call Leader-utilization. The Carousel algorithm leverages Chaining to execute purely locally
using information available on the chain, avoiding any extra communication. To capture all
requirements, we formalize a Leader-Aware SMR problem model, which alongside Agreement,
Liveness and Chain-quality, also requires Leader-utilization. We prove that Carousel satisfies
the Leader-Aware SMR requirements.

The high-level idea to satisfy Leader-utilization is to track active parties via the records
of their participation (e.g. signatures) at the committed chain prefix and elect leaders among
them. However, if done naively, the adversary can exploit this mechanism to violate Liveness
or Chain-quality. The challenge is that there is no consensus on a committed prefix to
determine a leader, since consensus itself needs a leader. Diverging local views on committed
prefixes may be e�ectuated, for instance, by having a Byzantine leader reveal an updated
head of the chain to a subset of the honest parties. Hence, Carousel may not have agreement
on the leaders of some rounds, but nevertheless guarantees Liveness and Leader-utilization
after GST.

To focus on our leader-rotation mechanism, we abstract away all other SMR components
by defining an SMR framework. Similarly to [20], we capture the logic and properties of
forming and certifying blocks of transactions in each round in a Leader-based round (LBR)
abstraction, and rely on a Pacemaker abstraction [4,15,16] for round synchronization. We
prove that when instantiated into this framework, Carousel yields a Leader-Aware SMR
protocol. Specifically, we show (1) for Leader-utilization: at most O(f2) faulty leaders may
be elected in crash-only executions (after GST); and (2) for Chain-quality: one out of O(f)
blocks is authored by an honest party in the worst-case. Note that in practice Chain-quality
guarantees are much better since the worst case scenario requires the adversary to posses an
unrealistic power.

We provide an implementation of Carousel in a HotStu�-based system and an evaluation
that demonstrates a significant performance improvement. Specifically, we get over 2x
throughput increase in faultless settings, and 20x throughput increase and 5x latency
reduction in the presence of faults. Our mechanism is adopted in the most recent version of
DiemBFT [21], a deployed HotStu�-based system.
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2 Model and Problem Definition

We consider a message-passing model with a set of n parties � = {p1, . . . , pn}, out of which
f <

n
3 are subject to failures. A party is crashed if it halts prematurely at some point during

an execution. If it deviates from the protocol it is Byzantine. An honest party never crashes
or becomes Byzantine. We say that an execution is crash-only if there are no Byzantine
failures therein.

For the theoretical analysis we assume an eventually synchronous communication model [9]
in which there is a global stabilization time (GST) after which the network becomes syn-
chronous. That is, before GST the network is completely asynchronous, while after GST
messages arrive within a known bounded time, denoted as ”.

As we later describe, we abstract away much of the SMR implementation details by
defining and using primitives. Therefore, our Leader-rotation solution is model agnostic and
the adversarial model depends on the implementation choices for those primitives.

Leader-Aware SMR
In this section we introduce some notation and then define the Leader-Aware SMR problem.
Roughly speaking, Leader-Aware SMR captures the desired properties of the Leader-rotation
mechanism in SMR protocols that are leader-based.

An SMR protocol consists of a set of parties aiming to maintain a growing chain of
blocks. Parties participate in a sequence of rounds, attempting to form a block per round.
In Leader-Aware SMR, each round is driven by a leader. We capture these rounds via the
Leader-based round (LBR) abstraction defined later.

A block consists of transactions and the following meta-data:
A (cryptographic) link to a parent block. Thus, each block implicitly defines a chain to
the genesis block.
A round number in which the block was formed.
The author id of the party that created the block.
A certificate that (cryptographically) proves that 2f + 1 parties endorsed the block in
the given round and with the given author. We assume that it is possible to obtain the
set of 2f + 1 endorsing parties1.

Note that having a round number and the author id as a part of the block is not strictly
necessary, but they facilitate formalization of properties and analysis. For example, an honest
block is defined as a block authored by an honest party and a Byzantine block is a block
authored by a Byzantine party.

We assume a predicate certified(B, r) œ {true, false} that locally checks whether the
block has a valid certificate, i.e. it has 2f +1 endorsements for round r. If certified(B, r) =
true we say that B is a certified block of round r. When clear from context, we say that B

is certified without explicitly mentioning the round number.
An SMR protocol does not terminate, but rather continues to form blocks. Each block B

determines its implied chain starting from B to the genesis block via the parent links. We
use notation B ≠æ B

Õ, saying B
Õ extends B, if block B is on B

Õ’s implied chain. Honest
parties can commit blocks in some rounds (but usually not all). A committed block indirectly
commits its implied chain. An SMR protocol must satisfy the following:

1 This can be achieved by multi-signature schemes which are practically as e�cient as threshold signa-
tures [3].
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4 Be Aware of Your Leaders

I Definition 1 (Leader-Aware SMR). Liveness: An unbounded number of blocks are
committed by honest parties.
Agreement: If an honest party pi has committed a block B, then for any block B

Õ

committed by any honest party pj either B ≠æ B
Õ or B

Õ ≠æ B.
Chain-quality: For any block B committed by an honest party pi, the proportion of
Byzantine blocks on B’s implied chain is bounded.
Leader-Utilization: In crash-only executions, after GST, the number of rounds r for
which no honest party commits a block formed in r is bounded.

The first two properties are common to SMR protocols. While most SMR algorithms
satisfy the above mentioned Liveness condition, a stronger Liveness property can be defined,
requiring that each honest party commits an unbounded number of blocks. This property
can be easily be achieved by an orthogonal forwarding mechanism, where each honest leader
that creates a block explicitly sends it to all other parties. A notion of Chain-quality that
bounds the adversarial control over chain contents was first suggested by Garay et al. [10].
We introduce the Leader-utilization property to capture the quality of the Leader-rotation
mechanism in crash-only executions. Note that although it is tempting to define leader
utilization for Byzantine executions as well, it seems impossible to do so without failure
detectors. Byzantine parties can decide not to form a block whenever they become leaders.
This reduces to the question – can we bound the number of adversarial leaders? the answer
is, unfortunately, no.

3 Leader-Aware SMR: The Framework

In order to isolate the Leader-rotation problem in Leader-Aware SMR protocols, we abstract
away the remaining logic into two components. First, similar to [19, 20] we capture the logic
to form and commit blocks by the Leader-based round (LBR) abstraction (Section 3.1). We
follow [4, 16] and capture round synchronization by the Pacemaker abstraction (Section 3.2).
These two abstractions can be instantiated with known implementations from existing SMR
protocols.

In Section 3.3 we define the core API for Leader-rotation and combine it with the above
components to construct an SMR protocol. In Section 4 we present a Leader-rotation
algorithm that can be easily computed based on locally available information and makes the
construction a Leader-Aware SMR.

3.1 Leader-based round (LBR)
The LBR abstraction exposes to each party pi an API to invoke LBR(r, ¸), where r œ N is a
round number and ¸ is the leader of round r according to party pi. Intuitively, a leader-based
round captures an attempt by parties to certify and commit a block formed by the leader2 –
which naturally requires su�ciently many parties to agree on the identity of the leader. We
assume that non-Byzantine parties can only endorse a block B with round number r and
author ¸ by calling LBR(r, ¸).

Every LBR invocation returns within �l > c” time, where c depends on the specific LBR
implementation (i.e., each round requires a causal chain of c messages to complete). That is,
�l captures the inherent timeouts required for eventually synchronous protocols. We say

2 Existing SMR protocols may have separate rounds (and even leaders) for forming and committing
blocks, but this distinction is not relevant for the purposes of the paper and LBR abstraction is defined
accordingly.
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that round r has k Æ n LBR-synchronized(¸) invocations if k honest parties invoke LBR(r, ¸)
after GST and within �l ≠ c” time of each other with the same party ¸

3.
The return value of an LBR invocation in round r is always a block with a round number

r
Õ Æ r. The intention is for LBR invocations to return gradually growing committed chains.

Occasionally, there is no progress, in which case the invocations are allowed to return a
committed block whose round r

Õ is smaller than r. Formally, the output from LBR satisfies
the following properties:

I Definition 2 (LBR). Endorsement: For any block B and round r, if certified(B, r) =
true, then the set of endorsing parties of B contains 2f + 1 parties. 4

Agreement: If B and B
Õ are certified blocks that are each returned to an honest party

from an LBR invocation, then either B ≠æ B
Õ or B

Õ ≠æ B.
Progress: If there are k Ø 2f + 1 LBR-synchronized(¸) invocations at round r and ¸ is
honest, then they all return a certified B with round number r authored by ¸.
Blocking: If a non-Byzantine party ¸ never invokes LBR(r, ¸), then no LBR(r, ¸)
invocation may return a certified block formed in round r.
Reputation: If a non-Byzantine party p never invokes LBR for round r, then any
certified block B with round number r does not contain p among its endorsers.

The LBR definition intends to capture just the key properties required for round abstrac-
tion in SMR protocols but leaves room for various interesting behavior. For example, if the
progress preconditions are not met at round r, then some honest parties may return a block
B for round r while others do not. Moreover, in this case the adversary can hide certified
blocks from honest parties and reveal them at any point via the LBR return values.

3.2 The Pacemaker
The Pacemaker [4,15,16] component is a commonly used abstraction, which ensures that,
after GST, parties are synchronized and participate in the same round long enough to satisfy
the LBR progress. We assume the following:

I Definition 3 (Pacemaker). The Pacemaker eventually produces new_round(r) notifications
at honest parties for each round r. Suppose for some round r all new_round(r) notifications
at non-Byzantine parties occur after GST, the first of which occurs at time Tf , and the
last of which occurs at time Tl. Then no non-Byzantine party receives a new_round(r + 1)
notification before Tl + �p and Tl ≠ Tf Æ ”. The Pacemaker can be instantiated with any
parameter �p > 0.

To combine the LBR and Pacemaker components into an SMR protocol in Section 3.3 we
fix �p = �l. Note that by using the above definition, the resulting protocol is not responsive
since parties wait �p before advancing rounds. This can easily be fixed by using a more
general Pacemaker definitions from [4,15,16]. However, we chose the simplified version above
for readability purposes since the Pacemaker is orthogonal to the thesis of our paper.

3 LBR-synchronized requires that the corresponding execution intervals have a shared intersection lasting
Ø c” time.

4 Note that Endorsement implies that although LBR can be invoked for round r with more than one
leader l, there is at most one author for a block in r.
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6 Be Aware of Your Leaders

3.3 Leader-rotation - the missing component

In Algorithm 1 we show how to combine the LBR and Pacemaker abstractions into a leader-
based SMR protocol. The missing component is the Leader-rotation mechanism, which
exposes a choose_leader(r, B) API. It takes a round number r œ N and a block B and
returns a party p œ �. The choose_leader procedure is locally computed by each honest
party at the beginning of every round.

The Agreement property of Algorithm 1 follows immediately from the Agreement property
of LBR, regardless of choose_leader implementation. In Appendix A we prove that Al-
gorithm 1 satisfies liveness as long as all honest parties follow the same choose_leader
procedure and that this procedure returns the same honest party at all of them infinitely often.
In the next section we instantiate Algorithm 1 with Carousel: a specific choose_leader
implementation to obtain a Leader-Aware SMR protocol. That is, we prove that Algorithm 1
with Carousel satisfies liveness, Chain-quality, and Leader-utilization.

Algorithm 1 Constructing SMR: code for party pi

1: commit_head Ω genesis

2: upon new_round (r) do
3: leader Ω choose_leader (r, commit_head)
4: B ΩLBR(r,leader)
5: if commit_head ≠æ B then
6: commit B Û all blocks in B’s implied chain that were not yet committed.
7: commit_head Ω B

4 Carousel: A Novel Leader-Rotation Algorithm

In this section, we present Carousel– our Leader-rotation mechanism. The pseudo-code is
given in Algorithm 2, which combined with Algorithm 1 allows to obtain the first Leader-
Aware SMR protocol.

We use reputation to avoid crashed leaders in crash-only executions. Specifically, at the
beginning of round r, an honest party checks if it has committed a block B with round
number r ≠ 1. In this case, the endorsers of B are guaranteed to not have crashed by round
r ≠ 1. For Chain-quality purposes, the f latest authors of committed blocks are excluded
from the set of endorsers, and a leader is chosen deterministically from the remaining set.

If an honest party has not committed a block with round number r ≠ 1, it uses a round-
robin fallback scheme to elect the round r leader. Notice that di�erent parties may or may
not have committed a block with round number r ≠ 1 before round r. In fact, the adversary
has multiple ways to cause such divergence, e.g. Byzantine behavior, crashes, or message
delays. As a result, parties can disagree on the leader’s identity, and potentially compromise
liveness. We prove, however, that Carousel satisfies liveness, as well as leader utilization and
Chain-quality. Specifically, we show that (1) the number of rounds r for which no honest
party commits a block formed in r is bounded by O(f2); and (2) at least one honest block is
committed every 5f + 2 rounds. The argument is non-trivial since, for example, we need to
show that the adversary cannot selectively alternate the fallback and reputation schemes to
control the Chain-quality.
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S. Cohen et al. 7

Algorithm 2 Leader-rotation: code for party pi

8: procedure choose_leader(r, commit_head)
9: last_authors Ω ÿ

10: if commit_head.round_number ”= r ≠ 1 then
11: return (r mod n) Û round-robin fallback
12: active Ω commit_head.endorsers

13: block Ω commit_head

14: while |last_authors| < f · block ”= genesis do
15: last_authors Ω last_authors fi {block.author}
16: block Ω block.parent

17: leader_candidates Ω active \ last_authors

18: return leader_candidates.pick_one() Û deterministically pick from the set

4.1 Correctness
Leader-Utilization.
In this section, we are concerned with the protocol e�ciency against crash failures. We
consider time after GST, and at most f parties that may crash during the execution but
follow the protocol until they crash (i.e., non-Byzantine). We say that a party p crashes in
round r if r+1 is the minimal number for which p does not invoke LBR in line 4. Accordingly,
we say that a party is alive at all rounds before it crashes. In addition, we say that a round
r occurs after GST if all new_round (r) notifications at honest parties occur after GST.

We start by introducing an auxiliary lemma which extends the LBR Progress property for
crash-only executions. Since in a crash-only case faulty parties follow the protocol before they
crash, honest parties cannot distinguish between an honest leader and an alive leader that
has not crashed yet. Hence, the LBR Progress property hold even if the leader crashes later
in the execution. Formal proof of the following technical lemma, using indistinguishability
arguments, appears in Appendix A.

I Lemma 4. In a crash-only execution, let r be a round with k Ø 2f +1 LBR-synchronized(¸)
invocations, such that ¸ is alive at round r, then these k invocations return a certified B with
round number r authored by ¸.

Furthermore, if no party crashes in a given round and the preconditions of the adapted
LBR Progress conditions are met a block is committed in that round and another alive leader
is chosen.

I Lemma 5. If the preconditions of Lemma 4 hold and no party crashes in round r, then
k Ø 2f + 1 honest parties commit a block for round r and return the same leader ¸

Õ at line 3
of round r + 1 and ¸

Õ is alive at round r.

Proof. By Lemma 4, k honest parties return from LBR(r, ¸) with a certified block B with
round number r authored by ¸. Then, since commit_head ≠æ B, they all commit B at line 6
of round r + 1. By the LBR Reputation property, the set of B’s endorsers does not include
parties that crashed in rounds < r. Since no party crashes in round r, B’s endorsers are all
alive in round r. Since these 2f + 1 parties each committed block B with round number r,
in choose_leader in Algorithm 1, they all use the reputation scheme (line 18) to choose
the leader of round r + 1, that we showed is alive at round r. J
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8 Be Aware of Your Leaders

Next, we utilize the latter to prove that in a round with no crashes, it is impossible for a
minority of honest parties to return with a certified block from an LBR instance. Namely,
either no honest party returns a block, or at least 2f + 1 of them do.

I Lemma 6. In a crash-only execution, let r be a round after GST in which no party crashes.
If one honest party returns from LBR with a certified block B with round number r, then
2f + 1 honest parties return with B.

Proof. Assume an honest party returns a certified block B with round number r after
invoking LBR(r, ¸). By the LBR Blocking property, ¸ itself must have invoked LBR(r, ¸)
and by assumption it was alive at round r. By the LBR Endorsement property, the set of
endorsing parties of B contains 2f + 1 parties. Since we consider a crash-only execution, it
follows by assumption that 2f + 1 party called LBR(r, ¸). Due to the use of Pacemaker,
these calls are LBR-synchronized(¸) invocations. Finally, by Lemma 4 all these calls return a
certified B with round number r authored by ¸.

J

We prove that in a window of f + 2 rounds without crashes, there must be a round with
the su�cient conditions for a block to be committed for that round.

I Lemma 7. In a crash-only execution, let R be a round after GST such that no party
crashes between rounds R and R + f + 2 (including). There exists a round R Æ r Æ R + f + 2
for which there are 2f + 1 LBR-synchronized(¸) invocations with a leader ¸ that is alive at
round r.

Proof. First, let us consider the LBR invocations for round R. By Lemma 6, if one honest
party returns with a block B with round number R, then 2f + 1 honest parties return with
B, commit it and update commit_head accordingly (line 7). In this case, there are 2f + 1
choose_leader(R+1, B) invocations, which all return at line 18. Otherwise, no party return
a block with round number R, and thus they all return at line 11. By the code and since
a block implies a unique chain, in both cases 2f + 1 honest parties return the same leader
¸ in choose_leader(R + 1, B) (either by reputation or round-robin). By the Pacemaker
guarantees and since R + 1 occurs after GST, there are at least 2f + 1 LBR-synchronized(¸)
invocations. If ¸ is alive at round R + 1, we are done. Otherwise, ¸ must have been crashed
before round R by the alive definition and lemma assumptions. Thus, by the LBR Blocking
property no honest party commits a block for round R and they all choose the same leader
for the following round at line 11. The lemma follows by applying the above argument for
R + f + 2 ≠ R + 1 = f + 1 rounds.

J

Finally, we bound by O(f2) the total number of rounds in a crash-only execution for
which no honest party commits a block:

I Lemma 8. Consider a crash-only execution. After GST, the number of rounds r for which
no honest party commits a block formed in r is bounded by O(f2).

Proof. Consider a crash-only execution and let R1, R2, . . . Rk the rounds after GST in which
parties crash (k Æ f). For ease of presentation we call a round for which no honest party
commits a block formed in r a skipped round. We prove that the number of skipped rounds
between Ri and Ri+1 for 1 Æ i < k is bounded. If Ri+1 ≠ Ri < f + 4, then there are at most
f + 4 rounds and hence at most f + 4 skipped rounds. Otherwise, we show that at most
f + 2 rounds are skipped between rounds Ri and Ri+1.
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First, by Lemma 7, there exists a round Ri < Ri + 1 Æ r Æ Ri + 1 + f + 2 < Ri+1 for
which there are 2f + 1 LBR-synchronized(¸) invocations with a leader ¸ that is alive at round
r. By Lemma 5, since no party crashes in round r, 2f + 1 honest parties return the same
leader ¸

Õ at line 3 of round r + 1 and ¸
Õ is alive at round r. Since no party crashes at round

r + 1 as well (because Ri+1 ≠ Ri Ø f + 4), ¸
Õ is alive at round r + 1. By the Pacemaker

guarantees and since we consider rounds after GST, we conclude that there are at least 2f + 1
LBR-synchronized(¸Õ) invocations for round r + 1. By Lemma 5 applied again for round
r + 1, 2f + 1 honest parties commit a block for round r + 1. Thus, round r + 1 is not skipped.
We repeat the same arguments until round Ri+1, and conclude that in each of these rounds
a block is committed. Hence, the rounds that can possibly be skipped between Ri and Ri+1
are Ri Æ r

Õ
< r. Thus there are O(f) skipped round between Ri and Ri+1. For Rk we use

similar arguments but since no party crashes after Rk, we apply Lemma 5 indefinitely. We
similarly conclude that there are O(f) skipped rounds after Rk. All in all, since k Æ f , we
get O(f2) skipped rounds.

J

We immediately conclude the following:

I Corollary 9. Algorithm 1 with Algorithm 2 satisfies Leader-utilization.

4.1.1 Chain-Quality.
For the purposes of the Chain-quality proof, we say that a block is committed when some
honest party commits it. We say that a block B with round number r is immediately
committed if an honest party commits B in round r. When we refer to a leader elected in
of Algorithm 2 from the round-robin mechanism we mean line 11, and when we refer to a
leader elected from the reputation mechanism, we mean line 18.

We begin by showing that each round assigned with an honest round-robin leader implies
a committed block in that round or the one that precedes it (not necessarily an honest block).

I Lemma 10. Let r be a round after GST such that pi = (r mod n) is honest. Then, either
a Byzantine block with round number r ≠ 1 or an honest block with round number r ≠ 1 or r

is immediately committed.

Proof. If a block is immediately committed with round number r ≠ 1 then we are done.
Otherwise, no honest party commits a block with round number r ≠ 1 in round r ≠ 1, and
they all elect the round r leader ¸ using the round-robin mechanism. By the assumption, ¸ is
honest.

By the Pacemaker, all honest invocations of LBR(r, ¸) in line 4 are LBR-synchronized(¸).
Since there are at least 2f + 1 honest parties, by the LBR Progress property, all honest
invocations return the same certified block B with round number r authored by ¸. Then,
the honest parties commit B at line 6. J

If there are two consecutive rounds assigned with honest round-robin leaders and in
addition the last f committed blocks are Byzantine, then an honest block follows, as proven
in the following lemma.

I Lemma 11. Let r
Õ be a round after GST such that pi = (rÕ mod n) and pj = (rÕ + 1

mod n) are honest. Suppose f blocks with round numbers in [r, r
Õ) with di�erent Byzantine

authors are committed. For a block B with round number r
Õ or r

Õ + 1 that is immediately
committed, there is an honest block with round number [r, r

Õ + 1] on B’s implied chain.

dk



10 Be Aware of Your Leaders

Proof. By the LBR endorsement assumption and property, the author of block B should be
either a reputation-based, or a round-robin leader of round r

Õ or r
Õ + 1. If it is a round-robin

leader, then by the lemma assumption, the leader is honest and since B is the head of its
implied chain, the proof is complete. Thus, in the following we assume that B’s author is
a reputation-based leader. By the SMR Agreement property and the lemma assumption,
B’s implied chain contains f blocks with di�erent Byzantine authors and rounds numbers in
[r, r

Õ). By the code of the reputation-based mechanism, either all f Byzantine authors are
excluded from the leader_candidates which implies that B has an honest author, or that
there is an honest block with round number in [r, r

Õ) on B’s implied chain.
J

Lastly, the following lemma proves that in any window of 5f + 2 rounds an honest block
is committed.

I Lemma 12. Let r be a round after GST. At least one honest block is committed with a
round number in [r, r + 5f + 2].

Proof. Suppose for contradiction that no honest block with round number in [r, r + 5f + 2]
is committed. There are at least f rounds r

Õ in [r, r + 3f + 1), such that rounds r
Õ ≠ 1

and r
Õ are allocated an honest leader by the round-robin mechanism. By Lemma 10, a

block with round number r
Õ ≠ 1 or r

Õ is immediately committed. Due to Lemma 10 and the
contradiction assumption, for any such round r

Õ, a Byzantine block with round number r
Õ ≠ 1

is immediately committed. Since r
Õ ≠ 1 has an honest round-robin leader, the block must be

committed from the reputation mechanism.
It follows that f Byzantine blocks with round numbers in [r, r + 3f + 1) are immediately

committed from the reputation mechanism, and consequently, they all must have di�erent
authors. Note that there exists r

Õ œ [r + 3f + 1, r + 5f + 2) (in a window of 2f + 1
rounds), such that the round-robin mechanism allocates honest leaders to rounds r

Õ and r
Õ +1.

By Lemma 10, a block B with round number r
Õ or r

Õ +1 is immediately committed. Lemma 11
concludes the proof. J

We conclude the following:

I Corollary 13. Algorithm 1 with Algorithm 2 satisfies Chain-quality and Liveness.

Taken jointly, Theorem 9, Theorem 13, and the Agreement property proved in Section 3.3
yield the following theorem:

I Theorem 14. Algorithm 1 with Algorithm 2 implements Leader-Aware SMR.

5 Implementation

We implement Carousel on top of a high-performance open-source implementation of Hot-
Stu�5 [22]. We selected this implementation because it implements a Pacemaker [22],
contrarily to the implementation used in the original HotStu� paper6. Additionally, it
provides well-documented benchmarking scripts to measure performance in various condi-
tions, and it is close to a production system (it provides real networking, cryptography, and

5 https://github.com/asonnino/hotstuff
6 https://github.com/hot-stuff/libhotstuff
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persistent storage). It is implemented in Rust, uses Tokio7 for asynchronous networking,
ed25519-dalek8 for elliptic curve based signatures, and data-structures are persisted using
RocksDB9. It uses TCP to achieve reliable point-to-point channels, necessary to correctly
implement the distributed system abstractions. By default, this HotStu� implementation
uses traditional round-robin to elect leaders; we modify its LeaderElector module to use
Carousel instead. Implementing our mechanism requires adding less than 200 LOC, and
does not require any extra protocol message or cryptographic tool. We are open-sourcing
Carousel10 along with any measurements data to enable reproducible results11.

6 Evaluation

We evaluate the throughput and latency of HotStu� equipped Carousel through experiments
on Amazon Web Services (AWS). We then show how it improves over the baseline round-robin
leader-rotation mechanism. We particularly aim to demonstrate that Carousel (i) introduces
no noticeable performance overhead when the protocol runs in ideal conditions (that is, all
parties are honest) and with a small number of parties, and (ii) drastically improves both
latency and throughput in the presence of crash-faults. Note that evaluating BFT protocols
in the presence of Byzantine faults is still an open research question [2].

We deploy a testbed on AWS, using m5.8xlarge instances across 5 di�erent AWS regions:
N. Virginia (us-east-1), N. California (us-west-1), Sydney (ap-southeast-2), Stockholm (eu-
north-1), and Tokyo (ap-northeast-1). Parties are distributed across those regions as equally
as possible. Each machine provides 10Gbps of bandwidth, 32 virtual CPUs (16 physical
core) on a 2.5GHz, Intel Xeon Platinum 8175, 128GB memory, and run Linux Ubuntu server
20.04.

In the following sections, each measurement in the graphs is the average of 5 independent
runs, and the error bars represent one standard deviation. Our baseline experiment parameters
are 10 honest parties, a block size of 500KB, a transaction size of 512B, and one benchmark
client per party submitting transactions at a fixed rate for a duration of 5 minutes. We then
crash and vary the number of parties through our experiments to illustrate their impact on
performance. The leader timeout value is set to 5 seconds for runs with 10 and 20 parties
and increased to 10 seconds for runs with 50 parties. When referring to latency, we mean
the time elapsed from when the client submits the transaction to when the transaction is
committed by one party. We measure it by tracking sample transactions throughout the
system.

6.1 Benchmark in Ideal Conditions
Figure 1 depicts the performance of HotStu� with both Carousel and the baseline round-robin
running with 10, 20, and 50 honest parties. For runs with a small number of parties (e.g.,
10), the performance of the baseline round-robin HotStu� is similar to HotStu� equipped
with Carousel. We observe a peak throughput around 70,000 tx/s with a latency of around 2
seconds. This illustrates that the extra code required to implement Carousel has negligible
overhead and does not degrade performance when the total number of parties is small. When

7 https://tokio.rs
8 https://github.com/dalek-cryptography/ed25519-dalek
9 https://rocksdb.org
10 Link omitted for blind review.
11 Link omitted for blind review.
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12 Be Aware of Your Leaders

Figure 1 Comparative throughput-latency performance of HotStu� equipped with Carousel and
with the baseline round-robin. WAN measurements with 10, 20, 50 parties. No party faults, 500KB
maximum block size and 512B transaction size.

increasing the system’s size (to 20 and 50 parties), HotStu� with Carousel greatly outperforms
the baseline: the bigger the system’s size, the bigger the performance improvement. With 50
nodes, the throughput of our mechanism-based HotStu� increases by over 2x with respect to
the baseline, and remains comparable to the 10-parties testbed. After a few initial timeouts,
Carousel has the benefit to focus on electing performant leaders. Leaders on more remote
geo-locations that are typically slower are elected less often, the protocol is thus driven by the
most performant parties. Similar ideas were presented in [18] in the context of distributed
data storage, where a leader placement was optimized based on replicas’ locations. In our
experiments, latency is similar for both implementations and around 2-3 seconds.

6.2 Performance under Faults
Figure 2 depicts the performance of HotStu� with both Carousel and the baseline round-robin
when a set of 10 parties su�ers 1 or 3 crash-faults (the maximum that can be tolerated).
The baseline round-robin HotStu� su�ers a massive degradation in throughput as well as
a dramatic increase in latency. For three faults, the throughput of the baseline HotStu�
drops over 30x and its latency increases 5x compared to no faults. In contrast, HotStu�
equipped with Carousel maintains a good level of throughput: our mechanism does not
elect crashed leaders, the protocol continues to operate electing leaders from the remaining
active parties, and is not overly a�ected by the faulty ones. The reduction in throughput
is in great part due to losing the capacity of faulty parties. When operating with 3 faults,
Carousel provides a 20x throughput increase and about 5x latency reduction with respect to
the baseline round-robin.

Figure 3 depicts the evolution of the performance of HotStu� with both Carousel and
the baseline round-robin when gradually crashing nodes through time. For roughly the first
minute, all parties are honest; we then crash 1 party (roughly) every minute until a maximum
of 3 parties are crashed. The input transaction rate is fixed to 10,000 tx/s throughout the
experiment. Each data point is the average over intervals of 10 seconds. For roughly the
first minute (when all parties are honest), both systems perform ideally, timely committing
all input transactions. Then, as expected, the baseline round-robin HotStu� su�ers from
temporary throughput losses when a crashed leader is elected. Similarly, its latency increases
with the number of faulty parties and presents periods where no transactions are committed
at all. In contrast, HotStu� equipped with Carousel delivers a stable throughput by quickly
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Figure 2 Comparative throughput-latency performance of HotStu� equipped with Carousel and
with the baseline round-robin. WAN measurements with 10 parties. Zero, one and three party faults,
500KB maximum block size and 512B transaction size.

detecting and eliminating crashed leaders. Its latency is barely a�ected by the faulty parties.
This graph clearly illustrates how Carousel allows HotStu� to deliver a seamless client
experience even in the presence of faults.

7 Conclusions

Leader-rotations mechanisms in chaining-based SMR protocols were previously overlooked.
Existing approaches degraded performance by keep electing faulty leaders in crash-only
executions. We captured the practical requirement of leader-rotation mechanism via a
Leader-utilization property, use it define the Leader-Aware SMR problem, and described an
algorithm that implements it. That is, we presented a locally executed algorithm to rotate
leaders that achieves both: Leader-utilization in crash-only executions and Chain-quality in
Byzantine ones. We evaluated our mechanism in a Hotstu�-based open source system and
demonstrated drastic performance improvements in both throughput and latency compared
to the round-robin baseline.
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16 Be Aware of Your Leaders

Appendix A Correctness

I Lemma 15. If choose_leader returns the same honest party at all honest parties for
infinitely many rounds, then each honest party commits an unbounded number of blocks.

Proof. If choose_leader returns the same honest party at all honest parties for infinitely
many rounds, then there are infinitely many rounds after GST for which it does so. Let r be
such a round. By the Pacemaker guarantees, all honest parties make LBR-synchronized(¸)
invocations with the same honest leader ¸ returned from the choose_leader procedure. By
the LBR Progress property, they all return a certified block B and commit it at line 6. J

I Lemma 16. In a crash-only execution, let r be a round with k Ø 2f +1 LBR-synchronized(¸)
invocations, such that ¸ is alive at round r, then these k invocations return a certified B with
round number r authored by ¸.

Proof. Let fi1 be a crash-only execution, such that round r has k Ø 2f+1 LBR-synchronized(¸)
invocations with a leader ¸ that is alive at round r. If ¸ is honest, then the LBR Progress
property concludes the proof.

Otherwise, ¸ is faulty and by definition it crashes in round > r. Let fi2 be a crash-only
execution that is identical to fi1 until ¸ crashes, and the rest of fi2 is an arbitrary execution
where the honest parties in fi1 remain honest but ¸ never crashes and is also honest. Thus,
in fi2 the preconditions of the LBR Progress property hold and all k LBR-synchronized(¸)
invocations return a certified B with round number r authored by ¸.

An LBR(r, ¸) invocation by any party p completes within �l time, and starts immediately
after Pacemaker’s new_round(r) notification at p (because choose_leader is computed
locally and takes 0 time). By Pacemaker’s guarantees, no party receives new_round(r + 1)
notification until �p = �l time after the last new_round(r + 1) notification at some party,
hence all LBR(r, ¸) invocations must complete before any party receives a new_round(r + 1)
notification.

fi1 and fi2 are identical until ¸ crashes, which must happen after ¸ receives its new_round(r+
1) notification from the Pacemaker. This is because ¸ is alive in round r and follows the
protocol, invoking LBR in round r + 1 after receiving the new_round(r + 1) notification.
As a result, fi1 and fi2 are indistinguishable to all LBR(r, ¸) invocations, and the k LBR-
synchronized(¸) invocations in fi1 return certified block B with round number r authored by
¸ as in fi2, as desired. J
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1 Introduction

Byzantine Agreement (BA) is a key component in many distributed systems. As these
systems are being used at larger scales, there is an increased need to find e�cient solutions
for BA. Arguably, the most important aspect of an e�cient BA solution is its communication
costs. That is, how much information needs to be transferred in the network to solve the
BA problem. Indeed, improving the communication complexity, often measured as word
complexity, was the focus of many recent works and deployed systems [1, 11, 16, 2, 13, 7].

In the BA problem, a set of n processes attempt to agree on a decision value despite the
presence of Byzantine processes. One of the properties of a BA algorithm is a threshold t on
how many Byzantine processes it can withstand. Namely, the algorithm is correct as long as
up to t processes are corrupted in the course of a run. In this paper we focus on n = 2t + 1
and we assume a trusted setup of a public-key infrastructure (PKI) that enables us to use a
threshold signature scheme [15, 4, 6].

A large and growing body of literature has investigated how to reduce the word com-
plexity of BA algorithms. Recently, Momose and Ren [13] have presented a synchronous
protocol with O(n2) words, which meets Dolev and Reischuk’s long-standing lower bound [9].
Spiegelman [16] considered the more common case, where the number of actual failures,
denoted by f , is smaller than t with resilience of n = 3t + 1. In this paper we consider better
resilience and ask:

Can we design a BA protocol with O(n(f + 1)) communication complexity in runs with
f Æ t failures, where n = 2t + 1?
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Figure 1 Relation between various Byzantine Agreement solutions. Each box uses the primitives
within it.

Whereas Dolev and Reischuk’s better-known lower bound applies to worst-case runs, they
further proved a lower bound of �(nt) signatures in failure-free runs (f = 0) in a model with
a PKI. At the time, one could have thought that this bound extends to the communication
complexity, rendering it �(nt) even with small f values. However, the introduction of
threshold signature schemes [8, 15, 4, 6] exposed the possibility to compact many signatures
into one word, potentially saving many words.

In this paper, we first revisit the original problem as stated in Dolev and Reischuk’s work.
In this problem there is a single sender who proposes a value and we refer to this problem as
Byzantine Broadcast (BB). We prove that although O(nt) signatures are inevitable, O(nt)
messages are not necessary with f œ o(t) failures by presenting an adaptive BB solution with
O(n(f + 1)) words.

The idea behind our algorithm is to reduce this problem to another BA variant. There
is a simple reduction from BB to BA with the strong unanimity validity property (from
hereon: strong BA), which states that if all correct processes propose the same value, this is
the only allowed decision. In this reduction, the sender initially sends its value to all other
processes who then run a BA solution. Unfortunately, no adaptive strong BA is known to
date. I.e., a strong BA solution where communication complexity depends on f , rather than
on t. Instead, in Section 5 we reduce the problem to a new weak BA problem with a weaker
validity property, unique validity, which we define in this paper.

Intuitively, the validity condition of weak BA is somewhere between weak unanimity,
where if all processes are correct and propose the same value this is the only allowed decision,
and external validity [5], where a decision value must satisfy some external predicate. In weak
BA, one can define its desired predicate and the requirement is that if all correct processes
propose the same value and Byzantine processes cannot devise a value that satisfies the
chosen predicate, then the decision must be valid. Otherwise, ‹ is allowed.

While the unique validity condition seems to be weak, it is surprisingly powerful when
provided the “right” external predicate. For example, we can determine that a value is valid
if it has at least t + 1 unique signatures, assuring that some correct process in the system
knows this value. Unique validity may be of independent interest as a tool for designing
algorithms. We present our adaptive weak BA in Section 6. The weak BA, in turn, exploits
the quadratic solution by Momose and Ren [13]. Figure 1 describes the relation between the
various solutions.

Finally, we consider strong BA. In Section 7, we present the first optimally resilient
strong binary BA protocol with O(n) communication complexity in the failure-free case.
This leaves open the question whether a fully adaptive (to any f) strong BA protocol exists.
We summarize the results in Table 1.
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Table 1 Bounds on communication complexity of deterministic synchronous Byzantine Agreement
algorithms with resilience n = 2t + 1.

Upper Bound Lower Bound
Byzantine Broadcast O(n(f + 1)) Section 5 + Section 6 �(nf) (�(n2) signatures) [9]

Strong BA O(n2) multi-valued Momose-Ren [13] �(nf) binary
O(n) with f = 0, binary Section 7 (�(n2) signatures) [9]

Weak BA O(n(f + 1)) multi-valued Section 6 �(n)

2 Model and Preliminaries

We consider a distributed system consisting of a well-known static set � of n processes and an
adaptive adversary. The adversary may adaptively corrupt up to t < n, n = 2t + 1 processes
in the course of a run. A corrupted process is Byzantine; it may deviate arbitrarily from the
protocol. In particular, it may crash, fail to send or receive messages, and send arbitrary
messages. As long as a process is not corrupted by the adversary, it is correct and follows
the protocol. We denote by 0 Æ f Æ t the actual number of corrupted processes in a run.

Cryptographic tools. We assume a trusted public-key infrastructure (PKI) and a
computationally bounded adversary. Hence, we can construct and use a threshold signature
scheme [15, 4, 6]. We denote by ÈmÍp the message m signed by process p. Using a (k, n)-
threshold signature scheme, k unique signatures on the same message m can be batched into
a threshold signature for m with the same length as an individual signature. For simplicity
we abstract away the details of cryptography and assume the threshold signature schemes
are ideal. In practice, our results hold except with arbitrarily small probability, depending
on the security parameters.

Communication. Every pair of processes is connected via a reliable link. If a correct
process pi receives a message m indicating that m was sent by a correct process pj , then m

was indeed generated by pj and sent to pi. The network is synchronous. Namely, there is a
known bound ” on message delays, allowing us to design protocols that proceed in rounds.
Specifically, if a correct process sends a message to any other correct process at the beginning
of some round, it is received by the end of the same round.

Complexity. We use the following standard complexity notions [2, 16, 13]. While
measuring complexity, we say that a word contains a constant number of signatures and
values from a finite domain, and each message contains at least 1 word. The communication
complexity of a protocol is the maximum number of words sent by all correct processes,
across all runs. The adaptive complexity is a complexity that depends on f .

3 Problem Definitions

We consider a family of agreement problems all satisfy agreement and termination defined as
follows:

Agreement No two correct processes decide di�erently.
Termination Every correct process eventually decides.

In addition, each variant of the problem satisfies some validity property. In the Byzantine
Broadcast (BB) problem, a designated sender has an input to broadcast to all n processes.
The goal is that all correct processes decide upon the sender’s value. If the sender is Byzantine,
however, it is enough that all correct processes decide upon some common value. Formally,
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I Definition 1 (Byzantine Broadcast). In Byzantine Broadcast, a designated sender sender
has an input value vsender to broadcast to all processes, and each correct process decides on an
output value decisioni. BB solution must satisfy agreement, termination and the following
validity property:

Validity If sender is correct, then all correct processes decide vsender.

Byzantine Agreement (BA) is a closely related problem to BB. In this problem, a set � of
n processes each propose an initial value and they all attempt to reach a common decision. In
addition, the decided value must be “valid” in some sense that makes the problem non-trivial.
The classic notion of validity states that if all correct processes in � share the same initial
value, then the decision must be on this value. This property is known as strong unanimity,
and it entails a limitation on the resilience of a protocol, requiring that n Ø 2t + 1. For
hereon we refer to BA with strong unanimity validity condition as strong BA. Formally,

I Definition 2 (Strong Byzantine Agreement). In Byzantine Agreement, each correct process
pi œ � proposes an input value vi and decides on an output value decisioni. Any strong BA
solution must satisfy agreement, termination and the following validity property:

Strong unanimity If all correct processes propose the same value v, then the output is v.

A di�erent validity property requires that a decision satisfies some external boolean
predicate (we call such value a valid value). It is used under the assumption that all correct
processes propose valid values. This is known as external validity [5] and only requires
n > t. External validity by itself is trivial in case there is a well-known predefined value
that satisfies the predicate. However, it is commonly used in settings with signatures, where
valid values can be verified by all but generated only by specific users or sets thereof. For
instance, consider a predicate that verifies that v is signed by n ≠ t processes – no process
can unilaterally generate a default valid value.

Our notion of unique validity adopts external validity to allow default values to be decided
in cases when there is no unanimous valid value. We say that a value v exists in a run of
a BA protocol if v is either the input value of a correct process or can be generated by a
Byzantine process. E.g., any value signed by a non-Byzantine process cannot be generated
locally by a Byzantine process. Unique validity stipulates that there is a default value if and
only if there exists more than one valid value in a BA run. Formally,

I Definition 3 (Weak Byzantine Agreement). In weak Byzantine Agreement, each correct
process pi œ � proposes an input value vi and decides on an output value decisioni. Any
weak BA solution must satisfy agreement, termination and the following validity property:

Unique Validity Assume an arbitrary predicate validate(v) œ {true, false} that can be com-
puted locally. If a correct process decides v then either v = ‹ or validate(v) = true, and
if v = ‹ then more than one valid value exists in the run.

As the definition suggests, unique validity is satisfied in weak BA with respect to any
chosen external predicate. This allows for the application level to determine the desired
properties, and choose the relevant external predicate accordingly. As a simple example, one
can think of a predicate that specifies that a value is valid if it is signed by at least t + 1
processes stating that this value was their initial value. In this scenario, unique validity
yields exactly the common strong unanimity property on the underlying signed values.

In fact, unique validity is a useful tool when designing distributed algorithms as it allows
to use BA as a framework. Di�erent applications may require di�erent validity conditions,
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yet still unique validity prevents the system from having a trivial solution in the presence
of Byzantine processes. Note, in addition, that every solution to BA with external validity
property immediately solves weak BA.

4 Related Work

The starting point of this work goes back to 1985 when Dolev and Reischuk proved two
significant lower bounds for the Byzantine Broadcast problem. Specifically, they have studied
the worst-case message complexity over all runs and proved it to be �(nt). Moreover, in the
authenticated model, which was somewhat undeveloped at the time, they proved a lower
bound of �(nt) signatures – even in a failure-free run.

Since the publication of their fundamental results, the paradigm of complexity measure-
ment has shifted. The number of messages is of little importance nowadays, compared to
the number of words it entails. The total number of words (the communication complexity)
better reflects the load on the system and is commonly used today when analyzing distributed
algorithms. For example, Dolev and Reischuk presented in their paper a BB algorithm that
matches their messages’ lower bound. It requires O(nt) messages, but as a single message
can be composed of many di�erent signatures it requires a cubic number of words. It was
not until recently that a solution with quadratic communication complexity was presented
for synchronous BA with optimal resilience [13].

Dolev and Reischuk’s complementary lower bound on signatures does not translate to
a bound on the communication complexity of an algorithm. Only a few years after Dolev
and Reischuk’s work, the threshold signature scheme was introduced [8]. This scheme allows
multiple signatures to be compacted into a single combined signature of the same size. That
is, a single word can carry multiple signatures. In this work, we focus on the communication
complexity of the BB and BA problems while taking advantage of such schemes.

To make our algorithms e�cient in real-world systems, we adjust the complexity to
match the actual number of faults. Moreover, we do so without compromising the worst-case
complexity. If all t possibly Byzantine processes crash, the complexity of our algorithms is
O(nt). However, in most runs, where systems do not exhibit the worst crash patterns, the
complexity is much lower. In fact, it is linear in the number of faults times n.

While consensus algorithms were designed to be adaptive in the number of failures
over 30 years ago [10], these works focus on the number of rounds that it takes to reach a
decision rather than on communication complexity. A special case of adaptivity is focusing
on failure-free runs. This problem was addressed both by Amdur et al. [3] (only for crash
failures) and by Hadzilacos and Halpern [12]. However, both works measure the number of
messages rather than words and have sub-optimal communication complexity.

A recent work by Spiegelman [16] tackled the problem of adaptive communication
complexity in the asynchronous model. It presents a protocol that achieves correctness in
asynchronous runs and requires O(ft + t) communication in synchronous runs. However,
due to the need to tolerate asynchrony, its resilience is only n Ø 3t + 1. This solution relies
on threshold signatures schemes, as we do.

As noted also by Momose and Ren [13], designing optimally-resilient protocols for the
synchronous model limits the use of threshold signatures. While this primitive has been used
in various eventually synchronous and asynchronous works over the last few years [1, 16, 14, 6],
usually with a threshold of n≠t. Using this threshold in settings with resilience n = 3t+1, we
get certificates signed by at least t+1 correct processes. However, for a resilience of n = 2t+1,
this is no longer the case. The threshold signatures “lose” their power as n ≠ t = t + 1 for
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which no intersection properties between correct processes signing two distinct certificates
can be derived. In this work, we exploit threshold signatures with this improved resilience by
carefully choosing a better threshold for our needs, as we discuss in Section 6. We mention
that although not using threshold schemes, Xiang et al. [17] also benefit from collecting more
than n ≠ t signatures in some scenarios.

5 From Weak BA to Adaptive Byzantine Broadcast

In this section we study the BB problem, and optimize its adaptive communication complexity
over all runs. We present a new BB protocol with resilience n = 2t + 1 and adaptive
communication complexity of O(n(f + 1)).

Recall that in the BB problem there is only one sender who aims to broadcast its initial
value and have all correct processes agree on it. If the sender is Byzantine, it may attempt to
cause disagreement across correct processes. There is a known simple and e�cient reduction
from BB to strong BA. Given a strong BA solution, the designated sender starts by sending
its value to all processes, and then they all execute the BA solution and decide on its output.
It is easy to see that if the sender is correct, all correct processes begin the strong BA
algorithm with the same input, and by strong unanimity they then decide upon the sender’s
value.

However, trying to apply the same reduction from BB to weak BA no longer works. If
the sender is Byzantine, the correct processes do not have a valid initial value for the BA.
Nonetheless, in this section we present a reduction from BB to weak BA1, which incurs a cost
of O(n(f + 1)) words. Thus, together with an adaptive weak BA with the same complexity,
we obtain a synchronous adaptive BB algorithm with a total of O(n(f + 1)) words and
resilience n = 2t + 1. At this point we assume that such adaptive weak BA is given as a
black box. An implementation for this primitive is presented in Section 6.

Algorithm 1 BB algorithm: code for process pi, sender ’s input is vsenedr

Initially vi, val, decision, ba_decision = ‹

Round 1:
1: if sender = pi then
2: send ÈvsenderÍsender to all
3: if received message ÈvÍsender from sender then
4: vi Ω ÈvÍsender

5: for j = 1 to n do
6: val Ω invokePhase(j, vi)
7: if val ”= ‹ then
8: vi Ω val

9: ba_decision Ω weak BA with BB_valid predicate and initial value vi

10: if ba_decision is of the form ÈvÍsender then
11: decision Ω v

12: else
13: decision Ω ‹

1 This reduction only works if n Ø 2t + 1.
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Our algorithm, presented in Algorithms 1 and 2, is composed of three parts. The first
part (lines 1 – 4 in Algorithm 1) is the first round in which the leader disseminates its value.
Processes that receive that value adopt it as their BA initial value (line 4). The second part
(lines 5 – 8 in Algorithm 1 and Algorithm 2) is a “vetting” part. It consists of n phases, with
a rotating leader. Leaders initiate phases to learn about the first part’s initial value. Finally,
the third part (lines lines 9 – 13 in Algorithm 1) is a weak BA execution.

Deciding upon the weak BA output takes care of the agreement and termination properties.
It is left to (1) satisfy the BB validity property and (2) make sure that the preconditions for
the weak BA hold, that is, each correct process has a valid input to propose. To achieve these
properties, we define the BB_valid(v) predicate in the following way. BB_valid(v) = true if
and only if v is signed by either the sender or by t + 1 processes.

Note that if the sender happens to be Byzantine, it is acceptable to decide on any value.
However, it is important to make sure that if the sender is correct, then the only valid value
is its initial BB input. Simply setting a value to be valid only if it is signed by the sender
would not work, as it allows a faulty sender to cause a scenario in which there are no valid
values to agree upon by not sending its value to any process. Note that we cannot simply fix
this by introducing some default valid value: If we were to do so, it would be valid to agree
on that value also in the case of a correct sender, violating the BB validity condition.

Our algorithm makes sure that if the sender is correct, the second condition in the
BB_valid definition cannot be satisfied, and hence there is only one possible outcome to the
BA algorithm. However, if the sender is Byzantine, it is guaranteed that there is some value
to decide upon. That is, all correct processes start the weak BA with an initial value that
satisfies the predicate.

In the vetting part of the algorithm, we ensure that the above-mentioned conditions
hold. Moreover, we do so with a communication complexity that is adaptive to the number
of actual process failures. The core idea is to work in leader-based phases. Every phase
has a unique leader and is composed of a constant number of leader-to-all and all-to-leader
synchronous rounds. Every phase is initiated by a leader-to-all message. If the leader decides
not to send the initial message then no messages will be sent by correct processes in this
phase and we say that this phase is silent, and otherwise, it is non-silent. In our algorithm,
a phase is non-silent if the phase’s leader did not choose an initial value for the BA prior to
that phase.

In every phase, each process pi starts the phase with some initial value vi and if the phase
is non-silent it returns some value. The requirements from the phase are: (1) If the phase’s
leader is correct and the phase is non-silent, then all correct processes return a valid value.
(2) All correct processes return either ‹ or a valid v. And (3) if the sender is correct, then
no correct process returns a value signed by t + 1 processes.

Upon a non-silent phase, the leader starts by asking all processes for help by sending a
help_req message (line 16). A correct process that receives a help request message answers
the leader. If it has set a BA initial value, it sends it to the leader at line 19, and otherwise,
it sends a signed idk (i don�t know) message at line 21. If the leader receives a value signed
by the designated sender it broadcasts it (line 24). Otherwise, if it receives t + 1 idk messages,
it uses a threshold signature scheme to create an idk quorum certificate and broadcasts it
(line 27). A process that receives from the leader a value signed by either the sender or any
t + 1 processes returns it. Otherwise, it returns ‹.

At the end of each non-silent phase, a correct process that returns a v ”= ‹ from the
phase, updates its local vi accordingly at line 8. This value at the end of the n

th phase is
the input for the weak BA algorithm. Since we execute n phases, all correct processes set
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valid values by the end of all phases. This is because once there is a correct process that did
not set a value it initiates its phase and then all correct processes return with a valid value.
At this point, all processes execute the weak BA and decide upon its output (line 9).

Algorithm 2 invokeP hase(j, vi): code for process pi

14: leaderΩ pj mod n

Round 1:
15: if leader = pi and vi = ‹ then
16: broadcast the message Èhelp_req, jÍleader

Round 2:
17: if received Èhelp_req, jÍleader then
18: if vi ”= ‹ then
19: send Èvi, jÍ to leader
20: else
21: send Èidk, jÍpi to leader

Round 3:
22: if leader = pi then
23: if received ÈvÕ

, jÍ s.t. v
Õ = ÈvÍsender then

24: broadcast the message ÈÈvÍsender, jÍ
25: else if received t + 1 unique signatures Èidk, jÍpÕ then
26: batch these messages into QCidk using a (t + 1, n)-threshold signature scheme
27: broadcast the message ÈQCidk, jÍ
28: if received Èv, jÍ from leader and BB_valid(v) =true then
29: return v

30: else
31: return ‹

5.1 Correctness
We start by proving the phase’s requirements. First, immediately from lines 29 – 31 we get
that all correct processes return either ‹ or a valid v. Next, the following lemma shows that
in non-silent phases with correct leaders all correct processes return a valid value.

I Lemma 4. If a phase is non-silent and its leader is correct, then all correct processes
return a valid value.

Proof. If the leader is correct it broadcasts a help_req message at line 16. All correct
processes then answer at round 2. If the leader receives a value signed by the sender at
line 23, it broadcasts it at line 24. Otherwise, no correct processes received a value signed by
the sender and sends an idk message at line 21. Since n = 2t + 1, the leader receives at least
t + 1 idk messages (from the correct processes) and forms an idk certificate. It broadcasts
this value at line 27. In both cases, all correct processes return a valid value at line 29. J

The next lemma proves that if all correct processes invoke a phase with a value other
than ‹, then they can return only one type of a valid value – a value signed by the sender.

I Lemma 5. If all correct processes invoke a phase with value v ”= ‹, there does not exists a
value signed by t + 1 processes in the system.

33



S. Cohen, I. Keidar, and A. Spiegelman 9

Proof. If all correct processes invoke a phase with value v ”= ‹, they reply to the help_req
messages at line 19 and never send an idk message. Since there are at most t Byzantine
processes, the leader cannot receive t + 1 idk messages and form an idk certificate signed by
t + 1 di�erent processes.

J

We now prove the correctness of the BB algorithm. First, to be able to use the weak BA,
all correct processes must execute it with valid initial values.

I Lemma 6. All correct processes execute line 9 with a valid initial value.

Proof. Let pi be a correct process. In n phases, there is one phase with pi as leader. If pi

has updated vi prior to that phase, it happened either line 4 or at line 8. Immediately from
the code we get that in both cases pi updates a valid value. If pi did not update a value, it
initiates a non-silent phase, and by Lemma 4 returns a valid value. J

Note that agreement and termination stem immediately from the code and the correctness
of the weak BA. The following lemma proves validity.

I Lemma 7. If sender is correct, then all correct processes decide vsender.

Proof. If sender is correct then all correct process learn vsender by the end of round 1 and
update their values at line 4. By Lemma 5, in no phase can any process create a value signed
by t + 1 processes. Thus, when executing the weak BA vsender signed by the sender is the
only valid value that exists in the run. By unique validity and since the sender does not sign
more than one initial value, vsender is the only possible BA output. It follows that all correct
processes execute line 11 and return the sender’s value.

J

We conclude the following theorem:

I Theorem 8. Algorithm 1 solves BB.

5.2 Complexity
We prove that the complexity of Algorithms 1 and 2 is O(n(f + 1)).

Each non-silent phase is composed of a constant number of all–to–leader and leader–to–all
rounds and thanks to the use of threshold signatures, all messages sent have a size of one
word. Thus, each phase incurs O(n) words. In total, there are potentially n phases. However,
it follows from Lemma 4 that after the first non-silent phase by a correct leader, all the
following phases with correct leaders are silent. Thus, the number of non-silent phases is
linear in f . We conclude that all phases in lines 5 – 8 use O(n(f + 1)) words. The complexity
of the weak BA black box is also O(n(f + 1)) (as we will show in the next section), resulting
in a total of O(n(f + 1)) words.

6 Adaptive Weak BA

In this section, we present a synchronous adaptive weak BA algorithm with resilience
n = 2t + 1. This algorithm is the missing link for the adaptive BB presented in the previous
section. Once again, we use the concept of phases and exploit the pattern of possible silent
phases. In this algorithm, the phases are slightly di�erent and the decision to start a phase
as a leader depends on whether or not the leader has reached a decision in previous phases.

3N



10 Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

Unlike the BB problem, in BA every process begins the algorithm with its own input
value. Communication-e�cient solutions to this problem usually employ threshold signatures
schemes [1, 16]. This technique is widely used in asynchronous and eventually synchronous
protocols, with resilience n = 3t+1. In these contexts, one can use a scheme of (n≠t)-out-of-n
signatures and benefit from the fact that any two such quorum certificates intersect by at
least t + 1 processes, and therefore at least one correct process.

Unfortunately, when trying to apply the same technique to a system with resilience
n = 2t + 1, it fails. A correct process might be unable to obtain 2t + 1 unique signatures on
any value as Byzantine processes might not sign it. On the other hand, a quorum certificate
with only t + 1 unique signatures is not very useful as it does not guarantee the desired
intersection property.

Our first key observation is that the intersection property can be achieved as long
as we have

'
n+t+1

2
(

unique signatures. If we obtain this number of signatures out of
n = 2t + 1, safety is preserved in the sense that conflicting certificates cannot be formed by a
malicious adversary. Of course, there are runs in which we cannot reach that threshold since'

n+t+1
2

(
> n ≠ t (e.g., if t processes crash immediately as the run begins). But in this case,

f Ø t
2 , and O(f) becomes asymptotically O(t). Hence, we can use a fallback algorithm with

O(nt) communication complexity.
As we assume that t œ �(n), we can use Momose and Ren’s synchronous algorithm

that has O(n2) communication complexity [13] for the fallback. We denote that algorithm
Afallback. Note that their algorithm is “stronger” than our proposed algorithm as it provides
strong unanimity for validity (i.e., it solves strong BA). We can use their solution by checking
the validity of Afallback’s output according to the predicate. If it is valid, this is the decision
value, and otherwise a default valid value is decided. Equipped with these insights, we next
present our algorithm.

During the phases part of the protocol, a correct process must commit a value before
reaching a decision. When it has certainty about a value it updates that value in a commit
variable, along a commit_proof of this commitment (a quorum certificate, signed by su�-
ciently many processes) and a commit_level indicating the latest phase of a valid commitment
it heard of. Once a correct process commits to a certain value it can only commit to a value
for which it heard a valid commitment proof in a later phase during the run. That is, it
may decide on a value for which it did not send a commit message. Moreover, it may even
decide on a value it did not commit at all. For example, if it reaches the fallback and no
correct process has decided. Once a correct process reaches a decision it updates it in its
local decision variable as well as a matching quorum certificate in decide_proof variable.

A single phase The code for a single phase is given in Algorithm 4. Each process pi

starts a phase with its initial value vi and information about possible previous commits
(commit, commit_proof, commit_level) and decisions (decision, decide_proof). Correct pro-
cesses return with updated information about commits and decisions that were made in
that phase (or prior to that). The guarantees of the phases are: (1) Every decision updated
during a phase is valid; (2) All decisions updated by correct processes are the same and there
exists at most one valid decide_proof in the system; and (3) If the phase’s leader is correct,
the phase is non-silent, and n ≠ f >

'
n+t+1

2
(
, then all correct processes return with the same

valid decision.
Every non-silent phase starts with the leader broadcasting a propose message with its

value in line 32. Upon receiving this message, correct processes either vote for this value
by signing it (line 34) or answer with a value that was previously committed as well as its
commit quorum certificate and level (line 36). If the leader receives a committed value it

Ny
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Algorithm 3 weak BA algorithm: code for process pi with initial value vi

Initially decision = undecided, bu_decision = vi, fallback_start Ω Œ
decide_proof, commit, commit_proof, bu_proof, fallback_val, phase_decision = ‹
commit_level Ω 0

1: for j = 1 to t + 1 do
2: phase_decision, decide_proof, commit, commit_proof, commit_level Ω

invokePhase(j, vi, decision, commit, commit_proof, commit_level)
3: if decision = undecided and phase_decision ”= undecided then
4: decision Ω phase_decision

Round 1:
5: if decision = undecided then
6: broadcast Èhelp_reqÍpi

Round 2:
7: if received Èhelp_reqÍpÕ message and decision ”= undecided then
8: send Èhelp, decision, decide_proofÍpi to p

Õ

9: if received t + 1 messages of Èhelp_reqÍpÕ from di�erent processes then
10: batch these messages into QCfallback(v) using a (t + 1, n)-threshold signature scheme
11: broadcast the message Èfallback, QCfallback, decision, proofÍpi

12: fallback_start Ω now + 2”

Round 3:
13: if received Èhelp, v, decide_proofÍpÕ with valid v and decide_proof for v and decision =

undecided then
14: decision Ω v

15: bu_decision Ω decision

16: while fallback_start > now do
17: if received valid Èfallback, QCfallback, v, proofpÕÍpÕ then
18: if decision = undecided and proofpÕ ”= ‹ is a valid proof for a valid v then
19: bu_decision Ω v

20: bu_proof Ω proofpÕ

21: if fallback_start = Œ then
22: broadcast the message Èfallback, QCfallback, bu_decision, bu_proofÍpi

23: fallback_start Ω now + 2”

24: fallback_val Ω Afallback with ”
Õ = 2” and initial value bu_decision

25: if decision = undecided then
26: if fallback_val is valid then
27: decision Ω fallback_val
28: else
29: decision Ω ‹

NR
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Algorithm 4 invokeP hase(j, vi, decision, decide_proof, commit, commit_proof, commit_level):
code for process pi

30: leaderΩ pj mod n

Round 1:
31: if leader = pi and decision = ‹ then
32: broadcast the message Èpropose, vi, jÍleader

Round 2:
33: if received Èpropose, v, jÍleader with a valid v for the first time and commit = ‹ then
34: send Èvote, v, jÍpi to leader
35: else if received Èpropose, v, jÍleader and commit ”= ‹ then
36: send Ècommit, commit,commit_proof, commit_level, jÍpi to leader

Round 3:
37: if leader = pi then
38: if received Ècommit, w, QCcommit(w), levelcommit, jÍpÕ then
39: broadcast the message Ècommit, w, QCcommit(w), levelcommit, jÍleader according to

the maximal levelcommit received
40: else if received

'
n+t+1

2
(

messages of Èvote, v, jÍpÕ then
41: batch these messages into QCcommit(v) using a (

'
n+t+1

2
(
, n)-threshold signature

scheme
42: broadcast the message Ècommit, v, QCcommit(v), j, jÍleader

Round 4:
43: if received Ècommit, v, QCcommit(v), levelcommit, jÍleader and levelcommit Ø commit_level

and levelcommit is valid according to QCcommit(v) then
44: send Èdecide, v, jÍpi to leader
45: commit Ω v

46: commit_proof Ω QCcommit(v)
47: commit_levelΩ levelcommit

Round 5:
48: if leader = pi then
49: if received

'
n+t+1

2
(

messages of Èdecide, v, jÍpÕ then
50: batch these messages into QCfinalized(v) using a (

'
n+t+1

2
(
, n)-threshold signature

scheme
51: broadcast the message Èfinalized, v, QCfinalized(v), jÍleader

52: if received Èfinalized, v, QCfinalized(v), jÍleader then
53: decision Ω v

54: decide_proof Ω QCfinalized(v)
55: return (decision, decide_proof, commit, commit_proof, commit_level)

Nk
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simply broadcasts it. Otherwise, if it manages to achieve the required
'

n+t+1
2

(
threshold of

signatures, it can form a quorum certificate committing its proposed value (line 40).
Note that at this point the committed value is not “safe enough” to be decided by correct

processes. Byzantine leaders may cause correct processes to participate in forming a commit
certificate for more than one value. As correct processes that have decided do not initiate
phases, they might never communicate without going through Byzantine leaders. Thus,
we need another level of certainty, in the form of the finalize certificate (to be stored in
decide_proof ). Using the commit levels, we maintain the invariant that if a correct process
receives a valid finalize certificate, then no finalize certificate on another value can be formed.

Thus, after a correct process learns about a committed certificate with a level higher
than the previous commit, it sends a matching decide message to the leader (line 44) and
updates the commit information accordingly. If the leader receives the necessary threshold
of decide messages, it forms a finalize quorum certificate. Every process that receives such a
certificate can safely return the certificate’s value as its decision.

Main algorithm The BA algorithm is given in Algorithm 3, using the phase algorithm as
a building block. In our algorithm, all correct processes eventually decide by updating their
decision variable. However, they do not halt. In our BA algorithm, we start by executing
n phases with a rotating leader, ensuring that every correct process has a chance to reach
a decision before executing the fallback algorithm. After the phases end there are several
possibilities. First, if there are at most n≠t≠1

2 Byzantine processes, all correct processes must
have decided. If there are more Byzantine processes, it may be the case that some correct
processes decided and others did not. This could happen, for example, if a Byzantine leader
causes the single correct leader to decide and not initiate its phase. By the phase guarantees,
we know that all correct processes that decide by this point, decide the same valid value.

To address the case where not all correct processes decided, we have processes that have
not decided ask for help from all other processes (line 6). If a correct process has decided
and receives a help_req message, it answers with a help message including the decision value
along with its proof at line 8. Note that in this round, the number of messages sent by
correct processes is linear in the number of help requests. Specifically, if only Byzantine
processes send help_req messages, the number of answers is O(nf) and independent of t.

We note that if t + 1 help requests are sent, then at least one of them is sent by a correct
process that did not manage to form quorum certificates when it served as leader. Thus, in
this case, f œ �(t), and we can execute the fallback algorithm. To make sure that all correct
processes participate in the fallback algorithm, a fallback certificate with t + 1 signature is
formed.

We now encounter a new challenge. We must have all correct processes start a synchronous
fallback algorithm at the same time. However, an adversary can form the fallback certificate
and deal it to only some correct processes. This scenario can happen, for example, if less
than t + 1 help_req messages are sent, and the adversary adds t help_req signatures of its
own. We thus require a correct process that receives a fallback certificate to broadcast it
(line 22). This ensures that whenever one correct process runs the fallback algorithm, all
of them do, but may still cause di�erent correct processes to start the fallback at di�erent
times. Nevertheless, we know that the starting time di�erence is at most the ” it takes the
message to arrive. We therefore run the fallback algorithm with ”

Õ = 2”, ensuring that all
correct processes enter a fallback round before any of them exits from it.

Another subtle point is making sure that the fallback algorithm does not output a decision
value that contradicts previous decisions made by correct processes. For that reason we add
another 2” safety window between getting notified about a fallback and initiating it. Correct
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processes that broadcast the fallback certificate attach their decision value and a proof (if
exists). In the 2” safety window, processes that learn about a decision value in the system
adopt it as the initial value for the fallback algorithm (line 17). Recall that Afallback is a
strong BA protocol. If a correct process decides v prior to the fallback algorithm, all other
correct processes learn about v during the safety window. Then, by strong unanimity, they
all decide v.

Note that if the decision returned from Afallback is not valid then it must be that strong
unanimity preconditions are not satisfied (since correct processes always have valid inputs)
and a default value is returned. Furthermore, whenever the strong unanimity precondition is
not satisfied, it follows that not all correct processes propose the same value. As a result,
there must exist more than one valid value in the run (the di�erent correct proposals). And
the ‹ default value is a valid weak BA output.

6.1 Correctness
We start by proving some lemmas about the phase’s guarantees. First, we prove that if the
decision is updated in a given phase, then its new value is valid.

I Lemma 9. If a correct process updates decision during invokePhase, then v is a valid
decision value.

Proof. If a correct process updates its decision value at line 53 of invokePhase then it must
have received a finalized certificate signed by

'
n+t+1

2
(

processes. Hence, at least one correct
process p

Õ signed the decide message for v at line 44. By the code, p
Õ signed the decide

message for v if it received a commit certificate signed by
'

n+t+1
2

(
processes. Hence, at least

one correct process p
ÕÕ signed the vote message for v at line 34. By the code, this is possible

only if v is a valid value (line 33).
J

Next, we prove that all correct processes that update their decision variable do so the
same value. Moreover, at most one valid decide_proof can exist in the system. That is, a
Byzantine process cannot devise a decide_proof that conflicts with any other decide_proof
known by correct processes.

I Lemma 10. All correct processes that update decision during invokePhase return the
same decision. In addition, at most one finalize certificate can be formed in all phases.

Proof. Assume that a correct process pi sets its decision value to v in phase l and another
correct process pj sets its decision value to w in phase k Ø l.

If k = l, then pi and pj set their decision value in the same round and they both receive a
finalize certificate signed by

'
n+t+1

2
(

di�erent processes. At least one correct process signed
both certificates and since correct processes sign at most one finalize message per phase,
v = w.

For the case where k > l: in phase l, pi receives a finalize certificate signed by
'

n+t+1
2

(

di�erent processes. Thus, at least
'

n+t+1
2

(
≠ t Ø n≠t+1

2 correct processes updated their
commit to v in that phase, along with a matching commit proof and commit_level = l

(line 47). Since these processes are committed to v, they do not vote for any value proposed
by a leader in the following phases. Thus at most n ≠ t ≠ n≠t+1

2 = n≠t≠1
2 correct processes

can sign a conflicting proposed value in any phase greater than l. Since n≠t≠1
2 + t <

'
n+t+1

2
(
,

in any phase greater than l, no process can collect
'

n+t+1
2

(
signatures on any value other

than v. Because processes that updated commit_level = l do not accept commitments on
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values with d < l (line 43), at most n≠t≠1
2 can send a decide message on a value committed

in phase d < l. Thus, at most n≠t≠1
2 + t <

'
n+t+1

2
(

decide messages for w ”= v can be sent.
Finally, no process can form and send a valid finalize certificate and decide upon any other
value. Thus, v = w.

J

We prove next that once a correct process is the leader of a non-silent phase, all correct
processes return the same valid decision value by the end of that phase.

I Lemma 11. If a correct leader invokes invokePhase in phase k and f <
n≠t≠1

2 , then all
correct processes return the same valid decision by the end of the phase and this decision is a
proposal of a correct process.

Proof. The leader broadcasts its value v to all processes. If there is a correct process p

for which commit ”= ‹, it sends the message Ècommit, w, proof, jÍp to the leader. If the
leader receives Ècommit, w, proof, jÍpÕ (from any process), it broadcasts in round 3 a commit
certificate for w. Otherwise, since f <

n≠t≠1
2 , leader receives

'
n+t+1

2
(

messages voting for
v and broadcasts a commit certificate for v. Then, all correct processes send the leader a
finalize messages on v or w. Again, the leader receives

'
n+t+1

2
(

messages finalizing v and
broadcasts a finalize certificate for v. Correct processes receive this message and update their
decision and decide_proof accordingly. Then, by the code they all return v.

J

We now prove the correctness of the main BA algorithm. The following two lemmas
prove that although some processes may start executing Afallback at di�erent times, they all
successfully execute the fallback algorithm.

I Lemma 12. If some correct process executes the fallback algorithm in Algorithm 3, all
correct process do so and they all start at most ” time apart.

Proof. Let p be the first correct process that executes the fallback algorithm at line 24 of
Algorithm 3 at time t. This means that at time t ≠ 2”, p broadcasts the fallback certificate
to all other processes (line 22). By synchrony, this certificate is guaranteed to arrive at all
correct processes by t ≠ ”, causing them to execute the fallback algorithm by t + ” if they
have not done so earlier. J

I Lemma 13. Consider a synchronous algorithm A. Let ‡ be a synchronized run of A
defined as follows. Let t be the time that the first correct process starts executing A in ‡.
All correct processes start executing A by t + ”. The round duration is 2”. In round r that
begins (locally) in tr, round r messages are processed if they are received in the time window
[tr ≠ ”, tr + 2”]. Then ‡ is a correct run of A.

Proof. Consider a process p that starts round r at time t
p
r . Let p

Õ be another correct process
that starts round r at time t

pÕ

r , and sends a message to p in round r. By assumption, t
pÕ

r = t
p
r+‘

where ≠” Æ ‘ Æ ”, and a message sent by p
Õ at t

pÕ

r arrives at time ta where t
pÕ

r Æ ta Æ t
pÕ

r + ”.
Note that round r ends at p at time t

p
r+1 = t

p
r + 2”. Hence, t

p
r ≠ ” Æ ta Æ t

p
r + 2”, as needed.

J

Next, we the following lemma states that if a correct process manages to reach a decision
prior to the fallback algorithm, then this is the only possible decision. Moreover, this decision
value must be a valid one.

N8



16 Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

I Lemma 14. If some correct process decides v before executing the fallback algorithm, then
all correct processes decide v and v is valid.

Proof. If there exists a correct process p that decides at line 4, then by Lemma 10 and
the code all processes that decide at line 4 decide v as well. Moreover, all other correct
process that have not decided by line 5, send help_req messages. Process p answers them
and they all decide at line 14. Otherwise, no correct process decides at line 4 and they all
send help_req messages at line 6. Then, they all receive t + 1 help messages and by the code
perform the fallback algorithm. In addition, by the lemma assumption, it must be that p

decides v at line 14.
If correct processes execute the fallback algorithm, then by the code they all wait a time

period of 2” before the execution, during which they receive all decisions made by other
correct processes and update bu_decision accordingly (line 24). Specifically, they receive v

from p. It follows from Lemma 10 that bu_decision is updated with the same value at all
correct processes. Thus, all correct processes execute Afallback with the same input, and by
strong unanimity they set fallback_val to v at line 24.

We now prove that v is valid. If p decides v at line 4, then it must have updated decision
in the scope of the relevant phase. By Lemma 9 this value is valid. Otherwise, if p decides
v at line 14, then the validity follows from the code. Hence, since v is valid, all correct
processes decide it by line 27.

J

Finally, we are ready to prove the required BA properties.

I Lemma 15 (Agreement). In Algorithm 3 all correct process decide on the same value.

Proof. First, by Lemma 10, all correct processes that decide in line 4 decide the same value
v. In addition, it follows from the same lemma that every correct process that decides at
line 14 after receiving a valid finalize certificate decides v, as at most one finalize certificate
can be formed.

It is left to show that if not all correct processes decide before the fallback algorithm at
line 24, they still decide upon the same value. If at least one correct process p receives a
fallback certificate it follows from Lemma 12 that all correct processes receive the certificate
within at most ” time of p. Then, by the code, all correct process execute the fallback
algorithm at line 24 and by Lemma 13 and the fallback algorithm solves strong BA, providing
agreement. By Lemma 14, we get that processes that decide before running the fallback
decide on the same value.

J

I Lemma 16 (Termination). In Algorithm 3 all correct process decide.

Proof. If not all correct processes decide before line 5 and no correct process receives a
fallback certificate, it follows that less than t + 1 correct processes broadcast help messages
at line 6. Hence, at least one correct process p has decided by line 5. Process p receives all
of the correct help messages at line 7 and answers them at line 8. All correct processes that
asked for help then decide at line 14.

It remains to examine the case that at least one correct process p receives a fallback
certificate. It follows from Lemma 12 that all correct processes receive the certificate within
at most ” time of p. Then, by the code, all correct process execute the fallback algorithm at
line 24 and by Lemma 13 and the fallback algorithm solves BA, providing termination.

J
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I Lemma 17 (Unique Validity). In Algorithm 3 if a correct process decides v then either
v = ‹ or validate(v) = true, and if v = ‹ then more than one valid value exists in the run.

Proof. Let v be the decision value of a correct process in Algorithm 3. First, by lines 27 – 29
validate(v) = true or v = ‹. We prove that if v = ‹, then at least two valid values exist in
the run.

By the code, all processes execute the fallback algorithm with valid inputs (either their
initial valid values, or a valid value they adopt at line 19). By strong unanimity of Afallback, if
all correct processes start with the same valid value v

Õ, then v
Õ must be the returned decision

value. This contradicts the fact that ‹ is returned at line 29. Therefore, not all correct
processes execute Afallback with the same value. As they all execute the fallback algorithm
with valid inputs, it follows that at least two valid values exist in the run.

J

In addition, we need to prove that every correct process updates its decision at most
once.

I Lemma 18. In Algorithm 3 all correct processes decide at most once.

Proof. Any correct process updates decision at line 4, line 14 or lines 27 – 29. In all cases,
it only does so if decision = undecided. Since by the code it does not update decision to the
value undecided, it follows that decision is updated at most once.

J

From Lemmas 15, 16, 17, and 18 we conclude:

I Theorem 19. Algorithm 3 solves weak BA.

6.2 Complexity
We show that if f <

n≠t≠1
2 , correct processes never perform the fallback algorithm.

I Lemma 20. If f <
n≠t≠1

2 , correct processes never perform the fallback algorithm.

Proof. In Lemma 11 we prove that if a correct process is the leader of a non-silent phase
and f <

n≠t≠1
2 , then all correct processes return the same valid decision. Since Algorithm 3

is composed of n phases, every correct process has a chance to invoke its phase and all
correct processes decide by line 4. Assume by way of contradiction that there exists a correct
process that invokes the fallback algorithm. By the code, it has received a fallback certificate.
However, such a certificate can only be formed by t + 1 unique help_req signatures, meaning
that at least one correct process sent a help_req message. But this is impossible if all correct
processes decide by line 4.

J

Each phase is composed of a constant number of all–to–leader and leader–to–all rounds.
Thus, it incurs O(n) words. Potentially, there are n phases. However, Lemma 11 proves that
once a correct leader invokes invokePhase() and the number of actual failures is f <

n≠t≠1
2 ,

all correct processes decide by the end of that phase. Since correct leaders that had already
decided do not invoke their phases (their phases are silent), the number of invoked phases
depends on f itself. Thus, all phases combined send O(n(f + 1)) words.

After n invokePhase invocations end, help request messages are sent only by correct
processes that did not decide. By the above-mentioned lemma, it happens only if f >

n≠t≠1
2 .
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In this case, f = �(n) and since t = �(n) it holds that O(nf) = O(n2). Correct processes
that decide by this point answer directly to whoever sent them help requests, without a�ecting
the asymptotic complexity. If some correct process receives a fallback certificate, another
all-to-all round is added, keeping the complexity O(n2). All other communication costs are
incurred in the fallback algorithm, whose complexity is also O(n2).

7 Strong BA: the failure-free case

Recall that the optimal resilience for strong BA is n = 2t + 1. In this section, we present a
binary strong BA protocol that has a communication complexity of O(n) in the failure-free
case. Otherwise, it has complexity O(n2). The question of whether an adaptive protocol
with O(n(f + 1)) complexity can be designed for strong BA with optimal resilience remains
open.

In the algorithm, presented in Algorithm 5, a single leader first collects all initial values.
Since we solve binary agreement, in the failure-free case there must be a value proposed by
t + 1 di�erent processes. Thus, the leader can use a threshold signature scheme to aggregate
a quorum certificate on this proposed value.

As a second step, the leader sends this certificate to all processes and attempts to collect
n di�erent signatures on the value. If it succeeds, it broadcasts it. Every process that receives
a signed-by-all certificate can safely decide upon its value. If a correct process does not
decide, it broadcasts a fallback message. Every process that hears such a message, echoes it
at most once, and executes Afallback after 2” time with 2”-long rounds, as in Section 6.

7.1 Correctness
I Lemma 21. If some correct process executes the fallback algorithm in Algorithm 5, all
correct processes do so and they all start at at most ” time apart.

Proof is similar to Lemma 12 in Section 6.

I Lemma 22 (Agreement). In Algorithm 5 all correct processes decide on the same value.

Proof. First, as correct processes only sign one decide message, every process that receives
QCdecide(v) receives the same quorum certificate. Thus, all correct processes that decide at
line 14 decide the same v. If at least one correct process receives a fallback message then by
Lemma 21, they all execute the fallback algorithm at most ” time apart. Thus, if at least
one correct process decides at line 14, then all correct processes that have not yet decided
learn about v in the 2” safety window, and adopt it as their initial value for the fallback
(line 23). It follows that all correct processes decide with the same input value v and by
strong unanimity this is the only possible decision.

J

I Lemma 23 (Termination). In Algorithm 5 all correct processes decide.

Proof. If not all correct processes decide by line 14, then a correct process broadcasts a
fallback message at line 17. It follows from Lemma 21 that all correct processes receive the
certificate within at most ” time of p. Then, by the code, all correct processes execute the
fallback algorithm at line 28 and by Lemma 13 and the fallback algorithm solves strong BA,
providing termination. J

I Lemma 24 (Validity). In Algorithm 5 if all correct processes propose the same value v,
then the output is v.

N3



S. Cohen, I. Keidar, and A. Spiegelman 19

Algorithm 5 strong BA algorithm: code for process pi with initial value vi

Initially decision, proof, bu_decision, bu_proof, fallback_val = ‹
fallback_start Ω Œ

1: leader Ω p1
Round 1:

2: send ÈviÍpi to leader
Round 2:

3: if leader = pi then
4: if received t + 1 messages of ÈvÍpÕ for some v then
5: batch these messages into QCpropose(v) using a (t+1, n)-threshold signature scheme
6: broadcast the message Èpropose, v, QCpropose(v)Íleader

Round 3:
7: if received valid Èpropose, v, QCpropose(v)Íleader then
8: send Èdecide, vÍpi to leader

Round 4:
9: if leader = pi then

10: if received n messages of Èdecide, vÍpÕ then
11: batch these messages into QCdecide(v) using a (n, n)-threshold signature scheme
12: broadcast the message Èdecide, v, QCdecide(v)Íleader

Round 5:
13: if received valid Èdecide, v, QCdecide(v)Íleader and decision = ‹ then
14: decisionΩ v

15: proof Ω QCdecide(v)
16: else
17: broadcast the message Èfallback, ‹, ‹Ípi

18: fallback_start Ω now + 2”

19: bu_decision Ω decision

20: while fallback_start > now do
21: if received Èfallback, v, proofpÕÍpÕ then
22: if decision = ‹ and proofpÕ ”= ‹ is a valid proof for a valid v then
23: bu_decision Ω v

24: bu_proof Ω proofpÕ

25: if fallback_start = Œ then
26: broadcast the message Èfallback, bu_decision, bu_proofÍpi

27: fallback_start Ω now + 2”

28: fallback_val Ω Afallback with ”
Õ = 2” and initial value bu_decision

29: if decision = ‹ then
30: decision Ω fallback_val

NN



20 Make Every Word Count: Adaptive Byzantine Agreement with Fewer Words

Proof. Correct processes only send decide messages on values with valid propose quorum
certificates. Note that such a quorum certificate can only be formed with t + 1 unique
signatures. Hence, if all correct processes propose the same value v, then the only possible
propose quorum certificate is with v. As a result, the only possible decide quorum certificate
is with v as well.

The fallback algorithm is executed with either the original initial values or with a value
that has a corresponding decide quorum certificate. Thus, if correct processes execute the
fallback algorithm, they all start with v and by strong unanimity of Afallback, the decision is
v. J

Finally, we prove that every correct process updates its decision at most once.

I Lemma 25. In Algorithm 5 all correct processes decide at most once.

Proof. Any correct process updates decision either at line 14 or at line 30. In both cases, it
only does so if decision = ‹. Since it does not update decision to the value ‹ at any step of
the algorithm, it follows that decision is updated at most once.

J

From Lemmas 22, 23, 24, and 25 we conclude:

I Theorem 26. Algorithm 5 solves binary strong BA.

7.2 Complexity
We show that if the run is failure-free, correct processes never perform the fallback algorithm.

I Lemma 27. If f = 0, correct processes never perform the fallback algorithm.

Proof. If all processes are correct then they all send their initial values to the leader at line 2.
Since values are binary, and there are n = 2t + 1 processes, there must be a value v such
that the leader receives t + 1 unique signatures on v. Then, the leader broadcasts a propose
certificate on v (line 6). Every correct process that receives this certificate replies with a
signed decide message at line 8. Since all processes are correct, the leader then receives n

signatures and then broadcasts a decide certificate on v (line 12). All processes then receive
this certificate and decide v at line 14. None of them sends a fallback message. J

By Lemma 27, if all processes are correct then they never perform the fallback algorithm,
and there are 4 all-to-leader and leader-to-all rounds, with a total of O(n) words. Otherwise,
the complexity is the complexity of the fallback algorithm, which is O(n2).

8 Conclusions and Future Directions

We have presented solutions for both Byzantine Broadcast and weak Byzantine Agreement
with adaptive communication complexity of O(n(f + 1)) and resilience n = 2t + 1. To
construct the weak BA algorithm, we utilized a threshold on the number of signatures
such that on one hand, this number is su�cient to ensure a safe algorithm with adaptive
communication in case there are not “many” Byzantine processes. On the other hand, failing
to achieve this threshold indicates that there is a high number of failures, which allows the
use of a quadratic fallback algorithm.

This weak BA algorithm is taken as a black box to construct our adaptive BB algorithm.
Here, we carefully choose the predicate for the validity property, to allow us to reduce one
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problem to the other. Finally, for strong BA we propose a binary solution with optimal
resilience. Our solution is linear in n in the practically common failure-free case, and quadratic
in any other case. The question of whether a fully adaptive strong BA with optimal resilience
exists or not remains open.

While n = 2t + 1 is optimal for strong BA, this is not the case for BB and weak BA,
where any t < n can be tolerated2. Thus, another possible future direction is improving
the resilience of an adaptive BB or adaptive weak BA to support any t < n. Our weak BA
algorithm relies on the current resilience to satisfy that if f > n ≠

'
n+t+1

2
(

then f is linear
in t. Note that this remains true for any resilience of n = –t + —, for – > 1, — > 0 without
compromising the intersection property required for safety. Should a quadratic solution
for weak BA be developed, it could be used to improve the total resilience of our adaptive
algorithm (instead of Momose and Ren’s algorithm [13]).
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BMi2;`�iBQM rBi? � >Qiaimz BKTH2K2Mi�iBQM- *�`Qmb2H ?�b b?Qr+�b2/ `2K�`F�#H2 T2`@
7Q`K�M+2 2M?�M+2K2MibX AM 7�mHiH2bb b2iiBM;b- Bi ?�b �+?B2p2/ � i?`Qm;?Tmi BM+`2�b2 Q7
Qp2` kt- r?BH2 BM i?2 T`2b2M+2 Q7 7�mHib- Bi ?�b T`QpB/2/ �M 2t+2TiBQM�H kyt BM+`2�b2 BM
i?`Qm;?Tmi �M/ � 8t `2/m+iBQM BM H�i2M+vX

6BM�HHv- BM *?�Ti2` kXk i?2 rB/2 BMi2`2bi BM #HQ+F+?�BMb ?�b H2/ mb iQ `2b2�`+? i?2
�bb2i i`�Mb72` T`BKBiBp2- r?B+? Bb i?2 +Q`2 T`Q#H2K bQHp2/ #v #HQ+F+?�BMbX q2 +QMbB/2`
i?2 b?�`2/ K2KQ`v KQ/2H i?�i Bb bQK2r?�i Qp2`HQQF2/ BM i?Bb +QMi2tiX h?2 2tTHQ@
`�iBQM Q7 i?2 �bb2i i`�Mb72` T`Q#H2K BM i?Bb KQ/2H QT2M2/ M2r `2b2�`+? /B`2+iBQMb �M/
2tT�M/2/ i?2 mM/2`bi�M/BM; Q7 +QM+m``2Mi b?�`2/@K2KQ`v Q#D2+ib mb2/ #v "vx�MiBM2
T`Q+2bb2bX Pm` rQ`F H2/ mb iQ /2p2HQT i?2 +QM+2Ti Q7 "vx�MiBM2 HBM2�`Bx�#BHBiv- � bT2@
+B�HBx2/ +Q``2+iM2bb +QM/BiBQM /2bB;M2/ iQ �++QKKQ/�i2 b?�`2/ K2KQ`v �H;Q`Bi?Kb i?�i
+�M 2z2+iBp2Hv rBi?bi�M/ "vx�MiBM2 #2?�pBQ`X liBHBxBM; i?Bb MQiBQM- r2 mM/2`iQQF i?2
i�bF Q7 2bi�#HBb?BM; +QKT`2?2MbBp2 mTT2` �M/ HQr2` #QmM/b 7Q` � p�`B2iv Q7 7mM/�K2Mi�H
+QKTQM2Mib BM i?2 }2H/ Q7 /Bbi`B#mi2/ +QKTmiBM;X

h?`Qm;? `B;Q`Qmb �M�HvbBb- r2 /2KQMbi`�i2/ i?�i �iQKB+ bM�Tb?Qi- `2HB�#H2 #`Q�/@
+�bi- �M/ �bb2i i`�Mb72` �`2 �HH T`Q#H2Kb i?�i H�+F f @`2bBHB2Mi 2KmH�iBQMb 7`QK `2;Bbi2`b
r?2M i?2 MmK#2` Q7 T`Q+2bb2b n b�iBb}2b n ≤ 2f X *QMp2`b2Hv- r2 +QMi`B#mi2/ �M

Ry8



�H;Q`Bi?K 7Q` "vx�MiBM2 HBM2�`Bx�#H2 `2HB�#H2 #`Q�/+�bi- 2t?B#BiBM; � ?B;?2` `2bBHB2M+2
i?`2b?QH/ rBi? n > 2f X G2p2`�;BM; i?Bb �H;Q`Bi?K- r2 7m`i?2` +QMbi`m+i2/ � "vx�MiBM2
bM�Tb?Qi rBi? i?2 b�K2 `2bBHB2M+2 +�T�#BHBiB2bX LQi�#Hv- i?Bb "vx�MiBM2 bM�Tb?Qi Qz2`b
p�Hm�#H2 �TTHB+�iBQMb- BM+Hm/BM; i?2 T`QpBbBQM Q7 � "vx�MiBM2 HBM2�`Bx�#H2 �bb2i i`�Mb72`X
*QMb2[m2MiHv- r2 2bi�#HBb?2/ � iB;?i #QmM/ QM i?2 `2bBHB2M+2 Q7 2KmH�iBQMb 7Q` �bb2i
i`�Mb72`- bM�Tb?Qi- �M/ `2HB�#H2 #`Q�/+�biX

q?BH2 Qm` T�T2` T`BK�`BHv 7Q+mb2b QM 72�bB#BHBiv `2bmHib- r2 +QMb+BQmbHv +?Qb2 MQi
iQ /2Hp2 BMiQ +QKTH2tBiv K2�bm`2bX aT2+B}+�HHv- Qm` +QMbi`m+iBQMb �bbmK2 mM#QmM/2/
biQ`�;2X �b � `2bmHi- i?2 K�ii2` Q7 2{+B2M+v `2K�BMb �M QT2M [m2biBQM- T`QpB/BM; �M
QTTQ`imMBiv 7Q` 7mim`2 `2b2�`+? �M/ 2tTHQ`�iBQMX

Pp2`�HH- i?Bb i?2bBb ?�b bB;MB}+�MiHv +QMi`B#mi2/ iQ i?2 }2H/ Q7 /Bbi`B#mi2/ bvbi2Kb #v
BMi`Q/m+BM; 2{+B2Mi "� �H;Q`Bi?Kb- BMMQp�iBp2 H2�/2`@`Qi�iBQM K2+?�MBbKb- �M/ MQp2H
�TT`Q�+?2b iQ �bb2i i`�Mb72` BM b?�`2/@K2KQ`v KQ/2HbX h?2 miBHBx�iBQM Q7 +`vTiQ;`�T?B+
iQQHb- T`Q#�#BHBiv i2+?MB[m2b- �M/ +�`27mH �M�HvbBb ?�b T`QpB/2/ p�Hm�#H2 BMbB;?ib �M/
T`�+iB+�H bQHmiBQMb 7Q` #mBH/BM; `Q#mbi �M/ `2HB�#H2 /Bbi`B#mi2/ bvbi2KbX h?2 }M/BM;b
T`2b2Mi2/ BM i?Bb i?2bBb H�v � bQHB/ 7QmM/�iBQM 7Q` 7mim`2 `2b2�`+? �M/ �/p�M+2K2Mib BM
i?2 }2H/- 2KTQr2`BM; i?2 /2p2HQTK2Mi Q7 KQ`2 2{+B2Mi �M/ b2+m`2 /Bbi`B#mi2/ bvbi2KbX

jXk �//BiBQM�H PT2M Zm2biBQMb

AM i?2 +QMi2ti Q7 i?Bb i?2bBb- r?2`2 b2p2`�H `2b2�`+? [m2biBQMb ?�p2 �H`2�/v #22M T`2@
b2Mi2/- Bi #2+QK2b 2pB/2Mi i?�i �//BiBQM�H �p2Mm2b Q7 BMp2biB;�iBQM �`Bb2- 2M+QKT�bbBM;
#Qi? i?2Q`2iB+�H �M/ T`�+iB+�H �bT2+ib Q7 /Bbi`B#mi2/ bvbi2KbX h?2b2 M2r /B`2+iBQMb
?QH/ i?2 TQi2MiB�H iQ 7m`i?2` 2M`B+? Qm` mM/2`bi�M/BM; �M/ +QMi`B#mi2 iQ i?2 �/p�M+2@
K2Mi Q7 i?2 }2H/X PM i?2 QM2 ?�M/- 7`QK � i?2Q`2iB+�H T2`bT2+iBp2- Bi Bb BMi`B;mBM; iQ
2tTHQ`2 [m2biBQMb i?�i /2Hp2 BMiQ i?2 BMi`B+�+B2b Q7 K�i?2K�iB+�H KQ/2Hb- b22FBM; iQ
`2}M2 2tBbiBM; 7`�K2rQ`Fb- 2bi�#HBb? bi`QM;2` i?2Q`2iB+�H 7QmM/�iBQMb- �M/ TQi2MiB�HHv
B/2MiB7v MQp2H +QKTH2tBiv #QmM/bX PM i?2 Qi?2` ?�M/- rBi?BM i?2 `2�HK Q7 T`�+iB+�H
bvbi2K BKTH2K2Mi�iBQMb- i?2`2 Bb � T`2bbBM; M22/ iQ �//`2bb +?�HH2M;2b 2M+QmMi2`2/
BM `2�H@rQ`H/ b+2M�`BQb- bm+? �b b+�H�#BHBiv- 7�mHi iQH2`�M+2- �M/ `2bQm`+2 K�M�;2K2MiX
q2 T`2b2Mi ?2`2BM � +QHH2+iBQM Q7 `2b2�`+? /B`2+iBQMb i?�i �`2 rQ`i? 2tTHQ`BM;- BM Qm`
QTBMBQMX

jXkXR hQr�`/b 1{+B2Mi "vx�MiBM2 �;`22K2Mi

�/�TiBp2 +QKKmMB+�iBQM rBi? QTiBK�H `2bBHB2M+2X AM Qm` `2+2Mi rQ`F (*Eakj)
r2 T`2b2Mi �M �/�TiBp2 bQHmiBQM iQ "vx�MiBM2 "`Q�/+�bi �M/ r2�F "vx�MiBM2 �;`22K2Mi
rBi? �/�TiBp2 +QKKmMB+�iBQM +QKTH2tBiv Q7 O(n(f +1)) �M/ `2bBHB2M+2 n = 2t+1X q?BH2
n = 2t + 1 Bb QTiBK�H 7Q` "� rBi? bi`QM; mM�MBKBiv- i?Bb Bb MQi i?2 +�b2 7Q` "" �M/
r2�F "�- r?2`2 �Mv t < n +�M #2 iQH2`�i2/X ai`QM; mM�MBKBiv `2[mB`2b i?�i B7 �HH
+Q``2+i T`Q+2bb2b T`QTQb2 i?2 b�K2 p�Hm2- i?Bb p�Hm2 Kmbi #2 /2+B/2/X h?2 +?�HH2M;2 Bb
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i?�i r?BH2 i?2 H2�/2`@#�b2/ �TT`Q�+? Bb +QKKQMHv mb2/ iQ �+?B2p2 HQr +QKKmMB+�iBQM
+Qbib BM bvM+?`QMQmb T`QiQ+QHb- Bi Bb mM+H2�` ?Qr iQ 2tTHQBi Bi iQ bQHp2 bi`QM; mM�MBKBivX
.2H2;�iBM; QM2 T`Q+2bb rBi? � mMB[m2 `QH2 U�M/ +QMb2+miBp2Hv Bib BMBiB�H p�Hm2V 7Q`#B/b
mb 7`QK �+FMQrH2/;BM; �HH BMBiB�H p�Hm2bX PM i?2 Qi?2` ?�M/- `2[mB`BM; 2p2`v T`Q+2bb iQ
bT`2�/ Bib p�Hm2 ?�b [m�/`�iB+ +Qbi BM i?2 bvbi2K #27Q`2 2p2M i`vBM; iQ bQHp2 i?2 �+im�H
T`Q#H2KX

AM Qm` rQ`F- r2 K�M�;2 iQ bQHp2 "� rBi? bi`QM; mM�MBKBiv rBi? `2bBHB2M+2 O(n) BM
7�BHm`2@7`22 `mMbX h?Bb T`Qp2b i?�i i?2`2 /Q2b MQi 2tBbi � HQr2` [m�/`�iB+ HQr2` #QmM/
QM +QKKmMB+�iBQM U�b 2tBbib 7Q` i?2 MmK#2` Q7 bB;M�im`2bV- #mi i?2 [m2biBQM Q7 r?2i?2`
i?2 �/�TiBp2 bQHmiBQM +�M #2 /2bB;M2/ 7Q` �Mv MmK#2` Q7 7�BHm`2b f < t `2K�BMb QT2MX

JmHiB@p�Hm2/ bm#@[m�/`�iB+ "vx�MiBM2 �;`22K2MiX AM Qm` }`bi rQ`F (*Eaky)
r2 T`2b2Mi i?2 }`bi bm#@[m�/`�iB+ "� �H;Q`Bi?K 7Q` �M �bvM+?`QMQmb K2bb�;2@T�bbBM;
2MpB`QMK2MiX h?Bb `2bmHi `2HB2b QM � T`BKBiBp2 +�HH2/ b?�`2/ +QBM- i?�i r2 BKTH2K2Mi BM
i?2 T�T2`- �M/ `2im`Mb �HH +Q``2+i T`Q+2bb2b i?2 b�K2 #Bi∈ {0, 1}- rBi? bQK2 +QMbi�Mi
T`Q#�#BHBivX .m2 iQ i?2 mb2 Q7 i?2 +QBM- Qm` "� bQHmiBQM QMHv rQ`Fb 7Q` � #BM�`v /QK�BMX
AX2X- i?2 /2+BbBQM p�Hm2 Kmbi #2 2Bi?2` y Q` RX h?Bb ?�b p�`BQmb mb2b BM /Bbi`B#mi2/
bvbi2Kb- #mi BM i?2 +QMi2ti Q7 #HQ+F+?�BM bvbi2Kb- Bi +�MMQi #2 mb2/ iQ /2+B/2 mTQM
#HQ+FbǶ Q`/2` BM i?2 +?�BMX hQ ;2i QM2 bi2T +HQb2` iQ 2p2`v/�v mb2- r2 rQmH/ HBF2 iQ
bQHp2 � KmHiB@p�Hm2/ bm#@[m�/`�iB+ "� �H;Q`Bi?K- r?2`2 /2+BbBQMb +�M #2 7`QK � H�`;2`
/QK�BMX h?Bb Bb +m``2MiHv �M QT2M [m2biBQMX
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"B#HBQ;`�T?v

(�:JR3) Aii�B �#`�?�K- :mv :QH�M@:m2i�- �M/ .�?HB� J�HF?BX >Qi@aimz i?2 GBM@
2�`- PTiBK�H@_2bBHB2M+2- PM2@J2bb�;2 "6h .2pBHX *Q__- �#bfR3yjXy8yeN-
kyR3X

(�JLYky) Aii�B �#`�?�K- .�?HB� J�HF?B- E�`iBF L�v�F- GBM; _2M- �M/ J�Q7�M uBMX
avM+ >Qiaimz, aBKTH2 �M/ T`�+iB+�H bvM+?`QMQmb bi�i2 K�+?BM2 `2THB+�@
iBQMX AM kyky A111 avKTQbBmK QM a2+m`Biv �M/ S`Bp�+v UaSV- T�;2b RyeĜ
RR3X A111- kykyX

(�JaRN) Aii�B �#`�?�K- .�?HB� J�HF?B- �M/ �H2t�M/2` aTB2;2HK�MX �bvKTiQiB+�HHv
QTiBK�H p�HB/�i2/ �bvM+?`QMQmb #vx�MiBM2 �;`22K2MiX AM S`Q+22/BM;b Q7 i?2
kyRN �*J avKTQbBmK QM S`BM+BTH2b Q7 .Bbi`B#mi2/ *QKTmiBM;- T�;2b jjdĜ
j9e- kyRNX

("**YRN) J�i?B2m "�m/2i- �p2`v *?BM;- �M/`2v *?m`bBM- :2Q`;2 .�M2xBb- 6`�MÏQBb
:�`BHHQi- w2FmM GB- .�?HB� J�HF?B- P/2/ L�Q`- .KBi`B S2`2HK�M- �M/ �H@
#2`iQ aQMMBMQX ai�i2 K�+?BM2 `2THB+�iBQM BM i?2 GB#`� "HQ+F+?�BMX h?2
GB#`� �bbMX- h2+?X _2T- kyRNX

(*Eay8) *?`BbiB�M *�+?BM- EH�mb Em`b�r2- �M/ oB+iQ` a?QmTX _�M/QK Q`�+H2b BM
*QMbi�MiBMQTH2, T`�+iB+�H �bvM+?`QMQmb #vx�MiBM2 �;`22K2Mi mbBM; +`vT@
iQ;`�T?vX CQm`M�H Q7 *`vTiQHQ;v- R3UjV,kRNĜk9e- kyy8X

(*Eaky) a?B` *Q?2M- A/Bi E2B/�`- �M/ �H2t�M/2` aTB2;2HK�MX LQi � +QBM+B/2M+2,
bm#@[m�/`�iB+ �bvM+?`QMQmb #vx�MiBM2 �;`22K2Mi r?TX AM j9i? AMi2`M�@
iBQM�H avKTQbBmK QM .Bbi`B#mi2/ *QKTmiBM;- kykyX

(*Eakj) a?B` *Q?2M- A/Bi E2B/�`- �M/ �H2t�M/2` aTB2;2HK�MX J�F2 2p2`v rQ`/
+QmMi, �/�TiBp2 #vx�MiBM2 �;`22K2Mi rBi? 72r2` rQ`/bX AM kei? AMi2`M�@
iBQM�H *QM72`2M+2 QM S`BM+BTH2b Q7 .Bbi`B#mi2/ avbi2Kb UPSP.Aa kykkVX
a+?HQbb .�;bim?H@G2B#MBx@w2Mi`mK 7Ƀ` AM7Q`K�iBF- kykjX

(*aky) "2MD�KBM u *?�M �M/ 1H�BM2 a?BX ai`2�KH2i, i2ti#QQF bi`2�KHBM2/ #HQ+F+?�BMbX
AM S`Q+22/BM;b Q7 i?2 kM/ �*J *QM72`2M+2 QM �/p�M+2b BM 6BM�M+B�H h2+?@
MQHQ;B2b- T�;2b RĜRR- kykyX

(._38) .�MMv .QH2p �M/ _Ƀ/B;2` _2Bb+?mFX "QmM/b QM BM7Q`K�iBQM 2t+?�M;2 7Q`
#vx�MiBM2 �;`22K2MiX CX �*J- jkURV,RNRĜky9- C�Mm�`v RN38X
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(.a3j) .�MMv .QH2p �M/ >X _�vKQM/ ai`QM;X �mi?2MiB+�i2/ �H;Q`Bi?Kb 7Q` #vx�M@
iBM2 �;`22K2MiX aA�J CQm`M�H QM *QKTmiBM;- RkU9V,e8eĜeee- RN3jX

(6GS38) JB+?�2H C 6Bb+?2`- L�M+v � GvM+?- �M/ JB+?�2H a S�i2`bQMX AKTQbbB#BHBiv
Q7 /Bbi`B#mi2/ +QMb2Mbmb rBi? QM2 7�mHiv T`Q+2bbX CQm`M�H Q7 i?2 �*J
UC�*JV- jkUkV,jd9Ĝj3k- RN38X

(:>JYRd) uQbbB :BH�/- _Qi2K >2KQ- aBHpBQ JB+�HB- :2Q`;BQb oH�+?Qb- �M/ LB+FQH�B
w2H/QpB+?X �H;Q`�M/, b+�HBM; #vx�MiBM2 �;`22K2Mib 7Q` +`vTiQ+m``2M+B2bX
AM S`Q+22/BM;b Q7 i?2 kei? avKTQbBmK QM PT2`�iBM; avbi2Kb S`BM+BTH2b-
T�;2b 8RĜe3- kyRdX

(:EGR8) Cm�M :�`�v- �;;2HQb EB�vB�b- �M/ LBFQb G2QM�`/QbX h?2 #Bi+QBM #�+F#QM2
T`QiQ+QH, �M�HvbBb �M/ �TTHB+�iBQMbX AM �MMm�H BMi2`M�iBQM�H +QM72`2M+2 QM
i?2 i?2Q`v �M/ �TTHB+�iBQMb Q7 +`vTiQ;`�T?B+ i2+?MB[m2b- T�;2b k3RĜjRyX
aT`BM;2`- kyR8X

(:GhYky) "BM;vQM; :mQ- w?2MHB�M; Gm- ZB�M; h�M;- CBM; sm- �M/ w?2M72M; w?�M;X
.mK#Q, 7�bi2` �bvM+?`QMQmb #7i T`QiQ+QHbX AM S`Q+22/BM;b Q7 i?2 kyky
�*J aA:a�* *QM72`2M+2 QM *QKTmi2` �M/ *QKKmMB+�iBQMb a2+m`Biv-
T�;2b 3yjĜ3R3- kykyX

(EaRR) o�H2`B2 EBM; �M/ C�`2/ a�B�X "`2�FBM; i?2 O(n2) #Bi #�``B2`, b+�H�#H2
#vx�MiBM2 �;`22K2Mi rBi? �M �/�TiBp2 �/p2`b�`vX CQm`M�H Q7 i?2 �*J
UC�*JV- 83U9V,RĜk9- kyRRX

(ErQR9) C�2 ErQMX h2M/2`KBMi, +QMb2Mbmb rBi?Qmi KBMBM;X .`�7i pX yXe- 7�HH- RURRV-
kyR9X

(GaS3k) G2bHB2 G�KTQ`i- _Q#2`i a?Qbi�F- �M/ J�`b?�HH S2�b2X h?2 #vx�MiBM2 ;2M@
2`�Hb T`Q#H2KX �*J h`�MbX S`Q;`�KX G�M;X avbiX- 9UjV,j3kĜ9yR- CmHv RN3kX

(JJ_R8) �+?Qm` JQbiû7�QmB- >�KQmK� JQmK2M- �M/ JB+?2H _�vM�HX aB;M�im`2@
7`22 �bvM+?`QMQmb #BM�`v #vx�MiBM2 +QMb2Mbmb rBi? t < n/3- O(n2) K2b@
b�;2b- �M/ O(1) 2tT2+i2/ iBK2X CQm`M�H Q7 i?2 �*J UC�*JV- ekU9V,jR-
kyR8X

(J_ky) �ibmFB JQKQb2 �M/ GBM; _2MX PTiBK�H +QKKmMB+�iBQM +QKTH2tBiv Q7
#vx�MiBM2 +QMb2Mbmb mM/2` ?QM2bi K�DQ`BivX �`sBp T`2T`BMi �`sBp,kyydXRjRd8-
kykyX

(J_oNN) aBHpBQ JB+�HB- JB+?�2H _�#BM- �M/ a�HBH o�/?�MX o2`B}�#H2 `�M/QK 7mM+@
iBQMbX AM 6QmM/�iBQMb Q7 *QKTmi2` a+B2M+2- RNNNX 9yi? �MMm�H avKTQbBmK
QM- T�;2b RkyĜRjyX A111- RNNNX

(L�FyN) a�iQb?B L�F�KQiQX "Bi+QBM, � T22`@iQ@T22` 2H2+i`QMB+ +�b? bvbi2K- kyyNX

(L"Jaky) P/2/ L�Q`- J�i?B2m "�m/2i- .�?HB� J�HF?B- �M/ �H2t�M/2` aTB2;2HK�MX
*Q;brQ`i?, #vx�MiBM2 pB2r bvM+?`QMBx�iBQMX AM S`Q+22/BM;b Q7 i?2 *`vT@
iQ2+QMQKB+ avbi2Kb *QM72`2M+2 U*1aǶkyV- kykyX
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(_�#3j) JB+?�2H P _�#BMX _�M/QKBx2/ #vx�MiBM2 ;2M2`�HbX AM k9i? �MMm�H avK@
TQbBmK QM 6QmM/�iBQMb Q7 *QKTmi2` a+B2M+2 Ub7+b RN3jV- T�;2b 9yjĜ9yNX
A111- RN3jX

(aTBkR) �H2t�M/2` aTB2;2HK�MX AM b2�`+? 7Q` �M QTiBK�H �mi?2MiB+�i2/ #vx�MiBM2
�;`22K2MiX AM j8i? AMi2`M�iBQM�H avKTQbBmK QM .Bbi`B#mi2/ *QKTmiBM;-
kykRX

(h2�) h?2 .B2K h2�KX .B2K#7i p9, bi�i2 K�+?BM2 `2THB+�iBQM BM i?2 /B2K #HQ+F+?�BMX
?iiTb , f f /2p2HQT2`b X /B2K X +QK f /Q+b f i2+?MB+�H @ T�T2`b f bi�i2 @
K�+?BM2@`2THB+�iBQM@T�T2`X?iKHX

(uJ_YRN) J�Q7�M uBM- .�?HB� J�HF?B- JB+?�2H E _2Bi2`- :mv :QH�M :m2i�- �M/ Aii�B
�#`�?�KX >Qiaimz, "6h +QMb2Mbmb rBi? HBM2�`Biv �M/ `2bTQMbBp2M2bbX AM
S`Q+22/BM;b Q7 i?2 kyRN �*J avKTQbBmK QM S`BM+BTH2b Q7 .Bbi`B#mi2/
*QKTmiBM;- T�;2b j9dĜj8e- kyRNX
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של הרצויים המאפיינים את לספק המאפשרים וטכניקות אלגוריתמים לפתח היא העבודה מטרת

האמיתי. בעולם מאומצות להיות שיכולות מבוזרות במערכות ומדרגיות תקלות בפני עמידות אמינות,

לכל אשר משתמשים, מצד התנהגויות של שונים לסוגים צוהר פותח במערכות הנרחב השימוש בפרט,

המערכת את "לתחמן" לנסות עלול בלוקצ'יין ברשת משתמש למשל, כך משלו. תמריצים משתמש

מאפשר אשר הביזנטי, במודל נלכדות זה מסוג התנהגויות האישי. לחשבונו כסף יותר להרוויח במטרה

והתחשבות מבוזרים שירותים של מימוש בחינת באמצעות כן, על שרירותית. בצורה לפעול למשתמשים

החישוב והתקדמות בהבנה חלק לוקחים אנו השרירותיות, התקלות שמציבות הייחודיים באתגרים

כולו. המבוזר

ביזנטית הסכמה מצבים, מכונת שכפול מבוזר: בחישוב מרכזיות בעיות שלוש על בדיון מתחילה התזה

ממספר המורכב שירות הוא מצבים מכונת שכפול . (Cryptocurrencies) קריפטוגרפים ומטבעות

השונים שהתהליכים מוודא השירות תקלות. בפני ועמיד יחידה מצבים כמכונת הפועלים תהליכים

ההסכמה בעיית לקוחות. של בקשות בעקבות נגרמים אשר המצב מעברי של זהה סדר אחרי עוקבים

של הנוכחות אף על משותפת, להחלטה להגיע מנסים תהליכים של קבוצה שבה בעיה היא ביזנטית

לנהל היכולת את מתארת קריפטוגרפים מטבעות של האחרונה הבעיה זדוניים. ביזנטיים תהליכים

המטבעות בעיית את לפתור אחת דרך כדלקמן: הוא הבעיות בין הקשר נכסיהם. את לקוחות לקבוצת

את מתאר נתון רגע בכל המערכת שמצב כך מצבים, מכונת שכפול באמצעות היא הקריפטוגרפים

מופעים באמצעות לפתור ניתן מצבים מכונת שכפול בעיית את השונים. הלקוחות של החשבון יתרת

המערכת מצב היא אליה להגיע שמנסים ההחלטה שלב שבכל כך הביזנטית, ההסכמה בעיית של רבים

הבא.

הרקע בתיאור מתחילה התזה המבוזר, החישוב בתחום בסיסית יסוד אבן היא ההסכמה שבעיית כיוון

סיבוכיות של תחתונים וגבולות זמנים סנכרון הנחות של שונים מודלים סקירת ביזנטית, הסכמה של

תת-ריבועיים ביזנטיים באלגוריתמים האחרונות ההתקדמויות את מדגיש הרקע כן, כמו בהם. הבעיה

משופרים ביצועים להשיג המאפשרים קריפטוגרפים, וכלים באקראיות שימוש של כלים באמצעות

הבעיה. לפתרון הנדרשת התקשורת של במונחים

וכן תת-ריבועי אסינכרוני ביזנטית להסכמה אלגוריתם הצגת כוללות זו בתזה שמוצגות התוצאות

כלומר, בפועל. התקלות למספר אדפטיבית היא שלו הפתרון שסיבוכיות לבעיה סנכרוני אלגוריתם

עבודה בנוסף, התהליכים. במספר לינארית היא התקשורת סיבוכיות תקלות, אין בה במערכת

מנגנון Carousel. הנקרא המצבים מכונת שכפול בבעיית מנהיגים" "החלפת מנגנון מציע בתזה אחרת

מחד, ביזנטיים) (שאינם תקינים לקוחות של בקשות ביצוע המאפשרת הוגנות תכונת מבטיח זה

בקשות לעבד שלוקח הזמן מבחינת המערכת ביצועי את משפר ביזנטיות תקלות ללא בריצה ומאידך

מכונת שכפול מבעיית המנותק באופן נבחנת הקריפטוגרפים המטבעות בעיית לבסוף, לקוחות. של

חוקרים אנחנו זה, במודל משותף. זיכרון של תקשורת במודל הבעיה את חוקרים אנו המצבים.

תוך ביזנטיים. תהליכים גם תקינים לתהליכים במקביל משמשים אשר מקביליים אובייקטים לראשונה

אמין שידור snapshot, של מימושים מדגימים אנו זה, מסוג אובייקטים של חדש נכונות תנאי הגדרת

כזה. למימוש ההכרחיים התנאים מהם בנוסף ומראים קריפטוגרפי ומטבע מידע של

ומספקת מרכזיים באתגרים טיפול באמצעות המבוזרות המערכות לתחום תורמת התזה לסיום,

הנחות של שונים מודלים בחינת תוך ואמינות מדרגיות שרירותיות, בתקלות לעמידות פתרונות

נרחבים. והסתברותיים קריפטוגרפים בכלים שימוש ותוך סינכרוניות,

BB



תקציר

מנת על אחת כמערכת ביחד פועלים עצמאיים תהליכים מספר בה מחשב מערכת היא מבוזרת מערכת

אחד מתקשרים והם שונים גאוגרפיים במיקומים להימצא יכולים התהליכים משותפת. מטרה להשיג

משתמשים מיליארדי משמשות זה מסוג מערכות המטרה. להשגת רלוונטי מידע להעביר כדי השני עם

ענן. שירותי או אלקטרוני דואר שירותי הן אלו למערכות נפוצות דוגמאות יומיומי. באופן

יותר, גבוהה אמינות הבטחת הוא ריכוזית מערכת לעומת מבוזרת מערכת של המרכזיים היתרונות

שתהליך העובדה מבוזרת במערכת למשל, כך תקלות. עם להתמודד שלה היכולת וכן מדרגיות תכונת

קצה. משתמשי ולשרת להמשיך יכולה והיא מושבתת להיות כולה למערכת גורם אינו נופל יחיד

היכולת את מייצגת היא מבוזרות. מערכות של חשוב מאפיין היא (סקלביליות) המדרגיות תכונת

כדי לגדול היכולת את או עבודה, של וגדלה הולכת כמות עם אלגנטית בצורה להתמודד מערכת של

למערכת נוספים תהליכים כדוגמת משאבים להוסיף ניתן כלומר, העבודה. בכמות לגידול מענה לתת

משתמשים. של יותר גדול במספר לתמוך ו/או המערכת ביצועי את לשפר במטרה

לפעול להמשיך המערכת יכולת את מייצג זה מאפיין תקלות. בפני עמידות הוא חשוב מאפיין עוד

של שונים כשלים למרות להתקדם, היכולת מבחינת והן התוצאות נכונות מבחינת הן תקנית, בצורה

להצליח בכדי תיאורטי באופן שונות תקלות ולתאר לייצג כיצד לדעת חשוב כן, על במערכת. תהליכים

הזה. המאפיין את המספקים אלגוריתמים לבנות

המתרחשות תקלות של שונים דפוסים מתארים מבוזרות מערכות של שונים תיאורטיים מודלים

עלולים במערכת תהליכים שבהן קריסה", "תקלות הנקראות בתקלות עוסקים חלקם בתהליכים.

שעשויים תהליכים מתארות ביזנטיות תקלות "ביזנטיות". בתקלות עוסקים חלקם ואילו להגיב, להפסיק

להפסיק עלולים ביזנטיים תהליכים למשל, הפרוטוקול. פי על מהם שנדרש ממה שונה באופן להתנהג

במטרה זאת כל מהם. מהמצופה שונה תוכן עם הודעות לשלוח אף או מהן, להתעלם הודעות, לשלוח

התקלות את לתאר נהוג המקרים, בשני המערכת. של לכשל ולגרום הפרוטוקול בנכונות לחבל

בפני עמידים יהיו אשר אלגוריתמים ולבנות התקלות, דפוס את שמגדיר יריב של הנחה באמצעות

האפשרי. ביותר הגרוע הדפוס

ביזנטיות. לתקלות ונוטים מבוזרות במערכות שמיושמים שירותים לבחון מבקשים אנו זו, תזה בעבודת

טכנולוגיות של החדש השימוש לאור במיוחד האחרונים, בעשורים התרחב זה מסוג בשירותים שימוש

מערכות המשתמשים שקהל שכיוון חשבונות. בין עסקאות לכתיבת דיגיטלית רשומות שהן בלוקצ'יין

הביקוש עם שמתמודדות ויעילות, נכונות מערכות בהבטחת האתגרים גם גדלים כך וגדל, הולך אלו

הגובר.
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תודות

שלא והתובנות האינסופית התמיכה ההנחיה, על קידר, עדית ליועצתי, תודתי את להביע ברצוני

בפז. יסולאו

במהלך ומהנים פוריים פעולה שיתופי על ולחבריי המסורה המחקר לקבוצת תודה אסירת אני

הזה. במסע מרכזי חלק הייתם שלי. המחקר

שלכם האמונה המתמשכים. והמוטיבציה העידוד על למשפחתי הערכתי את לחלוק רוצה אני

למצוינות. לשאוף אותי דחפה שלי ביכולות

הדוקטורט לאורך שלך התמיכה רומי. ולביתנו ברק זוגי, לבן להודות רוצה אני חשוב, והכי לסיום,

לבן מיוחדת תודה שלי. המניע הכוח הייתה בי שלך האיתנה האמונה זה. את שאיפשרה היא שלי

ארוכות. עבודה שעות במהלך לצידי ששהית כך על זאוס, הנאמן, הכלב לוויתי-

הלאומית האקדמיה של אדמס מלגות ולתכנית פלאטנר, האסו מכון מלגת לטכניון, מסורה תודה הכרת

זה. מחקר מימון על למדעים הישראלית



המחשב. למדעי בפקולטה קידר, עדית פרופסור של בהנחייתה בוצע המחקר

והשוואה התייחסות והצגתם, עיבודם הנתונים, איסוף כולל המחקר, כי מצהיר/ה זה חיבור מחבר/ת

המידה אמות לפי המבוצע מדעי ממחקר כמצופה ישרה, בצורה כולו נעשה וכו', קודמים למחקרים

ישרה בצורה נעשה זה בחיבור ותוצאותיו המחקר על הדיווח כן, כמו האקדמי. העולם של האתיות

מידה. אמות אותן לפי ומלאה,

ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של הדוקטורט מחקר תקופת במהלך

E2`2M *2MbQ`@>BHH2H- a?B` *Q?2M- _�M :2HH2b- �M/ :�H a2H�X .Bbi`B#mi2/ +QKTmi�iBQMb BM 7mHHv@
/272+iBp2 M2irQ`FbX AM �H2bbB� JBH�MB �M/ S?BHBTT qQ2H72H- 2/BiQ`b- SP.* Ƕkk, �*J avKTQ@
bBmK QM S`BM+BTH2b Q7 .Bbi`B#mi2/ *QKTmiBM;- a�H2`MQ- Ai�Hv- CmHv k8 @ kN- kykk- T�;2b R9RĜ
R8yX �*J- kykkX

a?B` *Q?2M- A/Bi E2B/�`- �M/ �H2t�M/2` aTB2;2HK�MX LQi � +QBM+B/2M+2, bm#@[m�/`�iB+ �bvM@
+?`QMQmb #vx�MiBM2 �;`22K2Mi q>SX AM >�;Bi �iiBv�- 2/BiQ`- j9i? AMi2`M�iBQM�H avKTQbBmK
QM .Bbi`B#mi2/ *QKTmiBM;- .Aa* kyky- P+iQ#2` Rk@Re- kyky- oB`im�H *QM72`2M+2- pQHmK2 RdN
Q7 GASA+b- k8,RĜk8,RdX a+?HQbb .�;bim?H @ G2B#MBx@w2Mi`mK 7Ƀ` AM7Q`K�iBF- kykyX

a?B` *Q?2M �M/ A/Bi E2B/�`X h�K2 i?2 rBH/ rBi? #vx�MiBM2 HBM2�`Bx�#BHBiv, `2HB�#H2 #`Q�/+�bi-
bM�Tb?Qib- �M/ �bb2i i`�Mb72`X AM a2i? :BH#2`i- 2/BiQ`- j8i? AMi2`M�iBQM�H avKTQbBmK QM .Bb@
i`B#mi2/ *QKTmiBM;- .Aa* kykR- P+iQ#2` 9@3- kykR- 6`2B#m`;- :2`K�Mv UoB`im�H *QM72`2M+2V-
pQHmK2 kyN Q7 GASA+b- R3,RĜR3,R3X a+?HQbb .�;bim?H @ G2B#MBx@w2Mi`mK 7Ƀ` AM7Q`K�iBF- kykRX

a?B` *Q?2M- A/Bi E2B/�`- �M/ P/2/ L�Q`X "vx�MiBM2 �;`22K2Mi rBi? H2bb +QKKmMB+�iBQM,
`2+2Mi �/p�M+2bX aA:�*h L2rb- 8kURV,dRĜ3y- kykRX

:mv :Q`2M- G27i2`Bb EQFQ`Bb@EQ;B�b- �H#2`iQ aQMMBMQ- a?B` *Q?2M- �M/ �H2t�M/2` aTB2;2H@
K�MX S`QQ7 Q7 �p�BH�#BHBiv � `2i`B2p�H BM � KQ/mH�` #HQ+F+?�BM �`+?Bi2+im`2X AM 6BM�M+B�H
*`vTiQ;`�T?v �M/ .�i� a2+m`Biv @ kdi? AMi2`M�iBQM�H *QM72`2M+2- kykj- kykjX

a?B` *Q?2M- _�iB :2H�b?pBHB- 1H27i?2`BQb EQFQ`Bb@EQ;B�b- w2FmM GB- .�?HB� J�HF?B- �H#2`iQ
aQMMBMQ- �M/ �H2t�M/2` aTB2;2HK�MX "2 �r�`2 Q7 vQm` H2�/2`bX AM Aii�v 1v�H �M/ Cm�M �X
:�`�v- 2/BiQ`b- 6BM�M+B�H *`vTiQ;`�T?v �M/ .�i� a2+m`Biv @ kei? AMi2`M�iBQM�H *QM72`2M+2-
6* kykk- :`2M�/�- J�v k@e- kykk- _2pBb2/ a2H2+i2/ S�T2`b- pQHmK2 Rj9RR Q7 G2+im`2 LQi2b
BM *QKTmi2` a+B2M+2- T�;2b kdNĜkN8X aT`BM;2`- kykkX

a?B` *Q?2M- A/Bi E2B/�`- �M/ �H2t�M/2` aTB2;2HK�MX J�F2 2p2`v rQ`/ +QmMi, �/�TiBp2 #vx�M@
iBM2 �;`22K2Mi rBi? 72r2` rQ`/bX AM kei? AMi2`M�iBQM�H *QM72`2M+2 QM S`BM+BTH2b Q7 .Bb@
i`B#mi2/ avbi2Kb UPSP.Aa kykkVX a+?HQbb .�;bim?H@G2B#MBx@w2Mi`mK 7Ƀ` AM7Q`K�iBF- kykjX

EQMbi�MiBMQb *?�HFB�b- a?B` *Q?2M- E2pBM G2rB- 6`2/`B+ JQ2xBMB�- �M/ uQH�M _QK�BHH2`X
>�b?rB`2b, ?vT2`2{+B2Mi +`2/2MiB�H@#�b2/ `�M;2 T`QQ7bX S`Bp�+v 1M?�M+BM; h2+?MQHQ;B2b
avKTQbBmK US1ha kykRV- kykRX
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