Byzantine Agreement & SMR with Sub-Quadratic Communication

Idit Keidar, Technion
Shout Out

Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP. Shir Cohen, Idit Keidar, and Alexander Spiegelman

Expected Linear Round Synchronization: The Missing Link for Linear Byzantine SMR. Oded Naor and Idit Keidar
Byzantine Agreement (BA)

• Consensus among n processes
• Up to f can be controlled by an adversary and act arbitrarily

• A building block for State Machine Replication (SMR)
New Frontiers for BA & Byzantine SMR

- Permissioned blockchains – shared ledger
- Other FinTech infrastructures
BA Has Been Around for Four Decades

• 2500+, 7000+ citations, resp.
• Traditional use-cases – a handful of processes

Will it scale?
Traditional BFT According to James Mickens

Figure 1: Typical Figure 2 from Byzantine fault paper: Our network protocol
Scalability Challenges

• Synchrony vs. asynchrony
 • Latency bounds defined in minutes
 • But deterministic fault-tolerant asynchronous consensus is impossible
 [Fisher, Lynch, Paterson 1985]

• Communication (word) complexity (of all processes together)
 • $\Omega(n^2)$ lower bound
 In the worst-case, in deterministic algorithms, regardless of synchrony
 [Dolev and Reischuk 1985]
Making It Scale

- Assume asynchrony
- Solve BA with high probability (WHP) (probability of being correct tends to 1 as $n \to \infty$)

VRFs

Threshold signatures

- Assume eventual synchrony
- Solve deterministic SMR
- Reduce expected complexity in some optimistic cases
Not a COINcidence: Sub-Quadratic Asynchronous Byzantine Agreement WHP

Shir Cohen, Idit Keidar, Alexander Spiegelman

DISC 2020
Contribution

The first sub-quadratic asynchronous BA WHP algorithm

- $\tilde{O}(n)$ word complexity and $O(1)$ expected time
- Safety and Liveness properties are guaranteed WHP
- Binary BA

- Previous sub-quadratic works made synchrony assumptions
[King and Saia 2011], Algorand [Gilad et al. 2017]
Model

• Asynchronous
• n processes (permissioned)
• Up to f Byzantine processes for $n \approx 4.5f$
• Trusted PKI
 • Inherent for sub-quadratic algorithms
 [Abraham et al. 2019] [Blum et al. 2020] [Rambaud 2020]
• Delayed adaptive adversary:
 • Can use the contents of a message m sent by a correct process for scheduling a message m' only if $m \rightarrow m'$
Verifiable Random Function (VRF)

• A pseudorandom function that provides a proof of its correct computation

• For a secret key sk with a matching public key pk
 • $VRF_{sk}(x)$ is a random value
 • Verifiable using pk
Use VRFs for

1. Flipping a shared coin
 • First step: $O(n^2)$ word complexity

2. Committee sampling
 • Cryptographic sortition
 • Reduces word complexity to $O(n \log n)$

Following Algorand [Gilad et al. 2017]
Shared Coin with Success Rate ρ

All correct processes output b with probability at least ρ, for any value $b \in \{0,1\}$
Shared Randomness

- Random number + proof

[Diagram of a coin and sticky notes with random numbers and proofs]
• Synchronous [Micali 2017]
• If the minimum VRF is of a correct process, all agree
 • With probability $\geq \frac{2}{3}$
Background: A Simple VRF-Based Shared Coin

- Synchronous
 - [Micali 2017]
- If the minimum VRF is of a correct process, all agree

With probability \(\geq \frac{2}{3} \)

Requires Synchrony
Asynchronous Shared Coin – Take 1

wait for n-f messages

\[\langle \text{first, } v_i \rangle \]
Asynchronous Shared Coin – Take 1

wait for n-f messages, send minimum

\[v_1 \]
\[v_2 \]
\[\ldots \]
\[\ldots \]
\[v_{n-1} \]
\[v_n \]

return LSB of minimum value
Asynchronous Shared Coin - Analysis

• We prove:
 • $\Omega(\epsilon)$ bound the number of common values
 • our adversary “commits” to them in advance

⇒ With a constant probability, the global minimum is common
Asynchronous Shared Coin - Analysis

• We prove:
 • $\Omega(\epsilon)$ bound the number of common values
 • our adversary “commits” to them in advance

⇒ With a constant probability, the global minimum is common

Word complexity of $O(n^2)$
Use VRFs for

1. Flipping a shared coin
 • First step: $O(n^2)$ word complexity

2. Committee sampling
 • Cryptographic sortition
 • Reduces word complexity to $O(n \log n)$

Following Algorand [Gilad et al. 2017]
Committee Sampling

• Use the VRF to sample $O(\log n)$ processes to a committee in each round

• Replace all-to-all rounds with committee-to-all rounds

• Evading the adversary:
 • Use a new committee in each round
 • Send to all since committees are unpredictable
 • By Chernoff bounds, “not too many” faulty processes in each committee
Shared Coin – Take 2

\[v_1 \quad \langle \text{first}, v \rangle \quad \ldots \quad \langle \text{second}, v \rangle \quad \ldots \quad v_{n-1} \]

return LSB of minimum value
Shared Coin – Take 2

return LSB of minimum value
Word complexity of $O(n \log n)$, but how many processes do we wait for?
Committee Sampling in Asynchronous Model

• Committee based protocols cannot wait for $n - f$ processes. Instead, they wait for W processes.

• We choose W, B so that using Chernoff bounds, WHP:
 1. At least W processes in each committee are correct
 2. At most B processes in each committee are Byzantine
Committee Sampling in Asynchronous Model

3. Every two subsets in a committee of size W intersect by at least $B + 1$ processes

4. Every two subsets in a committee of size W and $B + 1$ intersect by at least 1 process
Shir Cohen’s Shared Coin

\[\text{wait for } W \text{ messages} \]

\[\text{wait for } W \text{ messages} \]

return LSB of minimum value
From Coin Flipping to (Binary) BA WHP

- Approver based on [Bracha 1987] – reliable broadcast
 - But with committee sampling
- BA based on [Mostefaoui et al. 2015]
Approver

API: \(\text{approve}_i(v_i) \) returns a set of values

We assume \(\text{approve} \) is called with at most two different values

WHP the following hold:

- **Validity**: If all correct processes invoke \(\text{approve}(v) \) then the only possible return value of correct processes is \(\{v\} \)

- **Graded agreement**: If correct processes return both \(\{v\} \) and \(\{w\} \) then \(v = w \)

- **Termination**: If all correct processes invoke \(\text{approve} \) then it returns with a non-empty set at all of them
Approver 🎉 Without Sampling

- Echo v upon receiving f+1 v
- Send <ok, v> with n-f signatures upon receiving n-f <echo, v>
- Return the set of values in the first n-f ok messages

May speak twice
Approver 😊 With Sampling

Echo v upon receiving B+1 v

Send <ok, v> with W signatures upon receiving W <echo, v>

Return the set of values in the first W ok messages
Approver 🌟 With Sampling

Word complexity of $O(n \log^2 n)$

Send $<\text{ok, v}>$ with W signatures upon receiving $W <\text{echo, v}>$

Return the set of values in the first W ok messages
From Coin Flipping to (Binary) BA WHP

- Approver based on [Bracha 1987] – reliable broadcast
 - But with committee sampling

- BA based on [Mostefaoui et al. 2015]
1: \(est_i \leftarrow v_i \)
2: \(decision_i \leftarrow \bot \)
3: \textbf{for} \(r \) = 0, 1, \ldots \ \textbf{do}
4: \hspace{1em} \textit{vals} \leftarrow \text{approve}(est_i)
5: \hspace{1em} \textbf{if} \textit{vals} = \{v\} \text{ for some } v \ \textbf{then}
6: \hspace{2em} \textit{propose}_i \leftarrow v
7: \hspace{1em} \textbf{otherwise} \ \textit{propose}_i \leftarrow \bot
8: \hspace{1em} c \leftarrow \text{whp_coin}(r)
9: \hspace{1em} \textit{props} \leftarrow \text{approve}(\textit{propose}_i)
10: \hspace{1em} \textbf{if} \textit{props} = \{v\} \text{ for some } v \neq \bot \ \textbf{then}
11: \hspace{2em} est_i \leftarrow v
12: \hspace{1em} \textbf{if} \textit{decision}_i = \bot \ \textbf{then}
13: \hspace{2em} \textit{decision}_i \leftarrow v
14: \hspace{1em} \textbf{else}
15: \hspace{2em} \textbf{if} \textit{props} = \{\bot\} \ \textbf{then}
16: \hspace{3em} est_i \leftarrow c
17: \hspace{2em} \textbf{else} \ \textsf{\%\textit{props} = \{v, \bot\}}
18: \hspace{2em} est_i \leftarrow v
BA WHP

1: \(est_i \leftarrow v_i \)
2: \(decision_i \leftarrow \bot \)

3: for \(r = 0, 1, \ldots \) do
4: \(vals \leftarrow approve(est_i) \)
5: if \(vals = \{v\} \) for some \(v \) then
 6: \(propose_i \leftarrow v \)
 7: otherwise \(propose_i \leftarrow \bot \)
8: \(c \leftarrow \text{whp_coin}(r) \)
9: \(props \leftarrow approve(propose_i) \)
10: if \(props = \{v\} \) for some \(v \neq \bot \) then
 11: \(est_i \leftarrow v \)
 12: if \(decision_i = \bot \) then
 13: \(decision_i \leftarrow v \)
 else
 15: if \(props = \{\bot\} \) then
 16: \(est_i \leftarrow c \)
 else
 17: \(\%props = \{v, \bot\} \)
 18: \(est_i \leftarrow v \)
BA WHP

1: \(est_i \leftarrow v_i \)
2: \(decision_i \leftarrow \bot \)
3: \(\) for some \(v \neq \bot \)
6: \(propose_i \leftarrow v \)
7: \text{otherwise} \(propose_i \leftarrow \bot \)
8: \(c \leftarrow \text{whp_coin}(r) \)
9: \(props \leftarrow \text{approve}(propose_i) \)
10: \(\) for some \(v \neq \bot \) then
11: \(est_i \leftarrow v \)
12: \(\) else
13: \(\) if \(props = \{v\} \) then
14: \(\) else
15: \(\) if \(props = \{\bot\} \) then
16: \(\) \(est_i \leftarrow c \)
17: \(\) else \(props = \{v, \bot\} \)
18: \(\) \(est_i \leftarrow v \)

Word complexity of \(O(n \log^2 n) \)
Not a COINcidence Summary

• First formalization of randomly sampled committees using cryptography in asynchronous settings
• First sub-quadratic asynchronous shared coin and BA WHP algorithms
• Expected $\tilde{O}(n)$ word complexity and $O(1)$ expected time

Limitations:
• Binary consensus only
• Safety and liveness only WHP
• One-shot algorithm (not SMR)
• Non-optimal resilience – improved by [Blum et al. 2020]
Making It Scale

- Assume asynchrony
- Solve BA with high probability (WHP) (probability of being correct tends to 1 as $n \to \infty$)

VRFs

Threshold signatures

- Assume eventual synchrony
- Solve deterministic SMR
- Reduce *expected* complexity in some *optimistic* cases
Expected Linear Round Synchronization: The Missing Link for Linear Byzantine SMR

Oded Naor and Idit Keidar
DISC 2020
Model

• Eventual synchrony
 • Initially asynchronous
 • Synchronous after *Global Stabilization Time (GST)*
 • With latency bound δ

• Optimal resilience: $f < n/3$
 • For simplicity, assume $n=3f+1$

• Crypto: threshold signatures, PKI
• Shared source of randomness
Threshold Signatures Reduce Communication

Size of one signature
Byzantine SMR Communication Costs

<table>
<thead>
<tr>
<th>Year</th>
<th>Protocol</th>
<th>Word complexity to reach a decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>DLS</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>1999</td>
<td>PBFT</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>2007</td>
<td>Zyzzyva</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>2016</td>
<td>Tendermint, Casper</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>2017</td>
<td>Algorand Committees</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>2018</td>
<td>HotStuff</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>2019</td>
<td>LibraBFT</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
Eventually Synchronous Byzantine SMR

• Each process divides its time into rounds (aka views)
• $2f+1$ processes can make progress

$2f + 1$
An Alternative Run

Rounds

\[f \quad 4 \quad 5 \quad f + 1 \quad 6 \quad 7 \quad 8 \]

\[\cdots \quad \]
Needed: Round Synchronization (RS)

\[f \quad \text{to} \quad f + 1 \]

Rounds
Round Synchronization Makes SMR Live

• Theorem 4 from HotStuff [Yin et al. 2019]:

 “After GST, there exists a bounded time period T_f such that if all correct replicas remain in view v during T_f and the leader for view v is correct, then a decision is reached.”

• Formulated and solved as a separate problem
 HotStuff Pacemaker, Cogsworth [Naor et al. 2020], [Bravo et al. 2020]
The Round Synchronization Service

- Parametrized by a time period Δ (e.g., $= 4\delta$)
- Repeatedly outputs round-leader pairs $\langle r, p \rangle$
 - Enter round r with leader p
 - Rounds are monotonically increasing
 - Leaders are uniquely determined per round
- Guarantee:
 For any time t, there is a synchronization time $t_s \geq t$ so that all correct processes are in the same round with the same correct leader from time t_s for at least Δ
- The precondition needed for HotStuff’s liveness theorem
RS is the Performance Bottleneck

- After round synchronization with a correct leader, we have deterministic SMR
 - $O(n)$ word complexity per decision
 - $O(1)$ time per decision

HotStuff [Yin et al. 2019]
Tendermint [Buchman et al. 2018]
LibraBFT [Baudet et al. 2019]

- Our solution: RS with expected linear word complexity, constant time
Fast RS is the Key to SMR Performance

Round Synchronization + HotStuff = SMR

expected $O(n)$ + $O(n)$ = expected $O(n)$

• We get: deterministic SMR, after GST, each decision with
 • Expected $O(n)$ word complexity, $O(n^3)$ worst-case
 • Expected $O(1)$ time, $O(n^2)$ worst case
Relay-Based Round Synchronization

• In each round r, a designated relay is responsible for synchronizing the processes to this round r
• The relay collects threshold signatures to prove that enough processes proceed with it
• On timeout, switch to another relay
• Randomly permute relays in each round
 • In expected constant time, a correct relay is chosen
Relay-Based Round Synchronization

Rounds

1. A person holding a letter.
2. A person holding a letter.
3. A sand timer.
4. Person holding a letter.
5. Person holding a letter.
6. Person holding a letter.
7. Person holding a letter.
8. Person holding a letter.
Byzantine Relays Can Split the Good Guys

• Solved by adding another protocol phase - finalize
Message Flow – Synchronize in Round 5

Processes are in round < 5

Processes are in round 5
Round Synchronization Summary

• Formalize RS abstraction
• Byzantine RS with
 • Expected linear word complexity
 • Expected constant latency
• The missing ingredient for Byzantine SMR with expected linear word complexity
 • Per decision
 • HotStuff, LibraBFT
Conclusion

Sub-quadratic BA in two flavors:
1. Asynchronous, binary BA WHP
2. Eventually synchronous, multi-value SMR

Thank you!

Yes, it will scale!